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The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have
shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a
more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica
and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications
when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta,
fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated
controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These
detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are
abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.

N
anomaterials such as nanosilica particles (nSPs), titanium
dioxide nanoparticles (nano-TiO2) and carbon nanotubes
are already being applied in electronics1, foods2, cosmetics3

and drug delivery4. nSPs are used as additives in cosmetics and
foods because they are highly hydrophilic, easy to synthesize and
their surfaces can be modified easily5,6. The increasing use of nano-
materials has raised concerns7–9 because of recent reports showing
that carbon nanotubes can induce mesothelioma-like lesions in
mice, similar to those induced by asbestos10,11. We have also
shown that nSPs can induce severe liver damage in mice and inflam-
matory responses in vitro12,13.

Fetuses are known to be more sensitive to environmental toxins
than adults14–16, and it has been suggested that many chemical
toxins in air, water and foods can induce pregnancy complications
in humans15,16. An estimated 1 to 3% of women in the USA suffer
recurrent miscarriages17 and 7–15% of pregnancies are affected
by poor fetal growth (a condition known as intrauterine growth
restriction, IUGR)18. IUGR, which refers to a fetus with a weight
below the 10th percentile for its gestational age, can cause fetal
death and predisposes the child to a lifelong increased risk for
cardiovascular disorders and renal disease19,20. Examining the
potential risk of nanomaterials for causing miscarriage and IUGR
is therefore essential.

Although some studies have shown transplacental transport of
nanomaterials in pregnant animals and nanomaterial-induced

neurotoxicity in their offspring21–26, the effects of nanomaterials
on pregnant animals have not yet been studied. Here, we investi-
gated the biodistribution and fetotoxicity of various sizes of
surface-modified nSPs, fullerene C60 and nano-TiO2 in pregnant
mice. Our results indicate that nSPs with diameters less than
100 nm and nano-TiO2 with diameters of 35 nm induce resorption
of embryos and fetal growth restriction. Furthermore, we found that
modifying the surface of nSPs from –OH to –COOH or –NH2 func-
tional groups can prevent these pregnancy complications. These
data include basic information regarding possible ways of creating
safer nanomaterials.

Biodistribution of nanoparticles
Silica particles are well suited for studying the influence of nanoma-
terial size on biodistribution and various biological effects because
they show much better dispersibility in aqueous solutions than
most other nanomaterials27. We used silica particles with diameters
of 70 nm (nSP70), 300 nm (nSP300) and 1,000 nm (mSP1000) to
study the effect of size on biodistribution of the particles in pregnant
mice. Two other common nanomaterials, nano-TiO2 and fullerene,
were also examined. All silica nanoparticles were confirmed by
transmission electron microscopy (TEM) to be smooth-surfaced
spheres (Supplementary Fig. S1a,b,c,g,h,i)12,13. The hydrodynamic
diameters of nSP70, nSP300, mSP1000, nano-TiO2 and fullerene
were 65, 322, 1,140, 217 and 143 nm, respectively, with zeta
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potentials of –53, –62, –67, –23 and –13 mV, respectively (see
Supplementary Fig S2 for the physicochemical properties of all
the materials). The size distribution spectrum of each silica particle
showed a single peak (Supplementary Fig. S1m), and the hydrodyn-
amic diameter corresponded almost precisely to the primary particle
size for each sample (Supplementary Figs S1m and S2), indicating
that the silica particles used in this study were well-dispersed
in solution.

We examined the relationship between particle size and
biodistribution in the placenta by whole-body imaging analysis
after intravenous injection (through the tail vein) of fluorescent
DY-676-labelled nSP70, nSP300 or mSP1000 into pregnant mice
at gestational day 16 (GD16). At 24 h post-injection, intense fluor-
escence was observed in the liver of all mice receiving the differently
sized nanoparticles (Fig. 1a), suggesting that the accumulation of
nanoparticles in the liver is independent of size. Fluorescence was
seen in the placenta of mice treated with nSP70, but not in mice
treated with nSP300 or mSP1000 (Fig. 1a). We confirmed that
�5% of fluorescent DY-676 dissociated from the silica particles
after in vitro incubation in phosphate buffered saline (PBS) for
24 h at 37 8C (Supplementary Fig. S1n), and no fluorescence was
detected in the placenta of mice treated with fluorescent DY-676
only (data not shown), indicating that the fluorescence observed
in the mice was caused by silica particle accumulation in the tissues.

TEM analysis revealed that nSP70 (nanosized spherical black
objects in Fig. 1b–g) were found in placental trophoblasts
(Fig. 1b,c), fetal liver (Fig. 1d,e) and fetal brain (Fig. 1f,g). No par-
ticles were seen in the placenta, fetal liver or fetal brain of mice
treated with nSP300 or mSP1000 (data not shown). These results
suggest that the biodistribution of silica particles varied according
to particle size, and that only the smaller nSP70 nanoparticles accu-
mulated in the placenta and fetus. Similarly, nano-TiO2 were found
in placental trophoblasts (Fig. 1h,i), the fetal liver (Fig. 1j,k) and fetal
brain (Fig. 1l,m) after intravenous injection into pregnant mice. We
did not evaluate the biodistribution of fullerene C60 because of the
difficulty in detecting fullerene using TEM.

Recently, several reports have shown that some nanomaterials
can penetrate mouse and ex vivo human placental tissue25,28, and
it is generally known that high-molecular-weight species
(.1,000 Da) do not penetrate the placenta by passive diffusion.
Thus, we speculated that nSP70 either directly injured the blood–
placenta barrier or was actively transported through it, or both.
Furthermore, nSP70 in the fetal circulation would have access to
the fetal liver and brain, because the development of the blood–
brain barrier in the fetal brain is incomplete29.

Fetotoxicity of nanoparticles
To determine the fetotoxicity of nSP70, nSP300, mSP1000, nano-
TiO2 and fullerene in pregnant mice, we intravenously injected
the particles (100 ml, 0.8 mg per mouse) into pregnant mice on
two consecutive days, at GD16 and GD17, and measured the
maternal blood biochemistry. None of the silica particles induced
any significant changes in the levels of aspartate aminotransferase
(AST), alanine aminotransferase (ALT) and blood urea nitrogen
(BUN), and all parameters remained within the physiological
range, indicating that the particles did not induce maternal liver
and kidney damage at the administered doses (Supplementary
Fig. S3). Blood pressure and heart rates among all groups of mice
that received silica nanoparticles were similar and comparable to
control animals receiving PBS (Supplementary Fig. S4). However,
there was a significant increase in the number of granulocytes in
nSP70-treated pregnant mice compared with control mice receiving
PBS (Supplementary Fig. S5).

When compared to control mice, the maternal body weight of
nSP70- and nano-TiO2-treated mice decreased at GD17 and
GD18, whereas those treated with nSP300, mSP1000 and fullerenes

did not show any changes (Fig. 2a). Mice that received nSP70 and
nano-TiO2 had 20% and 30% lower uterine weights (Fig. 2b,c),
respectively, and significantly higher fetal resorption rates than
control mice and those that received nSP300, mSP1000 particles
or fullerene (Fig. 2d). nSP70- and nano-TiO2-treated mice also
had smaller fetuses (nearly 10% lower than control mice,
Fig. 2e,g) and smaller amnion sacs than mice that received
nSP300, mSP1000 or fullerene.

In contrast, the weights of placentae were the same among all
groups of mice (Fig. 2f,h). When mice were injected with lower con-
centrations of nSP70 (0.2 and 0.4 mg per mouse), none of the above
symptoms was observed; fetal resorption and growth restriction
were seen only at the highest dose used (0.8 mg per mouse;
Supplementary Fig. S6). These results indicate that only nSP70 at
the highest concentration and nano-TiO2 induced fetal resorption
and restricted fetal growth; fullerene did not induce any pregnancy
complications. The doses used here are typical of preclinical studies
for drug delivery applications of silica particles, intravenously admi-
nistered at several hundred milligrams per mouse30. In contrast, the
most common route of nano-TiO2 exposure to humans is through
the skin (for example, through the application of nano-TiO2-
containing cosmetics) and some reports have suggested that nano-
TiO2 particles do not penetrate into living skin31,32. Therefore, we
believe that nano-TiO2 may not induce any pregnancy compli-
cations following topical application. Furthermore, we have con-
firmed that the nano-TiO2 used in this study did not induce
cellular toxicity and DNA damage in vitro (data not shown).

It is known that the surface properties of nanomaterials can
influence biodistribution, inflammatory responses and cellular tox-
icity27,33. We examined the relationship between fetotoxicity and the
surface properties of nSP70. The nSP70 was surface-modified with
COOH or NH2 functional groups (nSP70-C or nSP70-N, respect-
ively), and both were confirmed by TEM to be smooth-surfaced
spherical particles (Supplementary Fig. S1). The hydrodynamic
diameters of the nSP70-C and nSP70-N were 70 and 72 nm,
respectively, with zeta potentials of –76 and –29 mV, respectively,
indicating that surface modification changed the surface charge of
the particles (Supplementary Fig. S2).

As with nSP70, mice that were intravenously injected with
DY-676-labelled nSP70-C and nSP70-N showed fluorescence in the
placenta (Fig. 1a). TEM analysis revealed that nSP70-C and nSP70-N
were found in placental trophoblasts (Fig. 1n,q), fetal liver (Fig. 1o,r)
and fetal brain (Fig. 1p,s), indicating that the particles accumulated in
the placenta and fetus. The maternal body weights of mice treated
with nSP70-C or nSP70-N were the same as those observed for
control mice (Fig. 2a). nSP70-C and nSP70-N did not affect the
uterine weight (Fig. 2c), fetal weight (Fig. 2e,g) or fetal resorption rate
(Fig. 2b,d). These results suggest that modifying the surface of nSP70
can prevent resorption and fetal growth restriction induced by nSP70.

Placental dysfunction in nSP70-treated mice
Normal placental development is required for embryonic growth,
and placental dysfunction has been associated with miscarriage
and fetal growth restriction34,35. The mature murine placenta con-
sists of four layers: maternal decidua, trophoblast giant cell, spon-
giotrophoblast and labyrinth34,35 (Fig. 3a). Maternal spiral arteries
converge into canals between the trophoblast giant cells, and these
canals pass through the spongiotrophoblast and labyrinth
layers34,35. The exchange of respiratory gases, nutrients and waste
takes place in the labyrinth layer between the fetal blood vessels
and maternal blood sinuses34,35.

To clarify the relationship between particle size, fetotoxicity and
placental dysfunction, we examined the pathological histology of the
placenta in nSP-treated mice using haematoxylin and eosin (H&E)
staining (Fig. 3b–e). The placenta of mice treated with nSP70
showed variable structural abnormalities, whereas those treated
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with nSP300 and mSP1000 did not show any significant abnormal-
ities when compared to control mice (Fig 3b,d). Spiral artery canals
failed to form (Fig. 3b,d) and blood flow was reduced in the fetal
vascular sinuses of nSP70-treated mice (Fig. 3c,e). To further eluci-
date the influence of nanoparticles on placental dysfunction, we are
examining the pathological histology of the placenta in nano-TiO2-
treated mice at present.

The areas including the placental major layers (the spongiotro-
phoblast and labyrinth) in nSP70-treated and control mice were
examined by periodic acid–Schiff (PAS) staining (Fig. 3f–i). The
total areas of placentae from each nSP70-treated mouse were not
significantly different from those of control mice (Fig. 4a). The
area of the spongiotrophoblast layer (Fig. 4b) and the ratio of the
spongiotrophoblast layer area to the total placental area (Fig. 4c)
in nSP70-treated mice were almost 50% smaller than those observed
in control mice. The percentage of nuclei positively stained by
terminal transferase-mediated dUTP nick end-labelling (TUNEL)
was significantly higher within the spongiotrophoblast layer of

nSP70-treated mice than within that of control mice, indicating
that nSP70 induced apoptotic cell death of spongiotrophoblasts
(Fig. 3j,k; Fig. 4d). The surrounding lengths of the villi in the labyr-
inth layer of nSP70-treated mice were significantly decreased com-
pared to those of control mice (Fig. 3l,m; Fig. 4f ), whereas the
ratio of the labyrinth layer area to the total placental area in
nSP70-treated mice was not significantly different from that of
control mice (Fig. 4e). These results suggest that nSP70-induced
pregnancy complications were probably caused by placental cellular
damage, which might affect maternal–fetal exchange.

Normal placental development requires the coordinated
expression of vascular endothelial growth factor (VEGF) and its
receptor, fms-like tyrosine kinase-1 (Flt-1)36. Soluble Flt-1 (sFlt-1)
is expressed by placental cells including spongiotrophoblasts,
and is a potent anti-angiogenic molecule that regulates the gener-
ation of placental vasculature during pregnancy by sequestering cir-
culatingVEGF and regulating the action of VEGF37. The plasma level
of sFlt-1 in nSP70- and nano-TiO2-treated mice was significantly
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Figure 1 | Biodistribution of nanoparticles in pregnant mice. a, In vivo fluorescence images. Pregnant mice at GD16 were treated with 0.8 mg

DY-676-labelled silica particles per mouse (nSP70, nSP300, mSP1000, nSP70-C or nSP70-N) or PBS (control), intravenously, through the tail vein. After
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(GD16 and GD17). Arrows indicate nanoparticles. These particles were present in placental trophoblast cells (b,c,h,i,n,q), fetal liver cells (d,e,j,k,o,r) and
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lower than in control mice and those receiving nSP300, mSP1000,
fullerene, nSP70-C and nSP70-N (Supplementary Fig. S7a–d), indi-
cating that nSP70 induced not only structural abnormalities, but also
functional abnormalities, in the mouse placenta.

The anticoagulation agent heparin is often administered to
prevent miscarriage and IUGR38. Mice treated with a combination
of nSP70 and heparin had slightly increased maternal body
weights and decreased fetal resorption rates compared to mice that
were not treated with heparin (Fig. 5a,c). Heparin treatment
prevented decreases in uterine and fetal weight in nSP70-treated
mice (Fig. 5b,d). Mice treated with a combination of nSP70
and heparin had similar levels of sFlt-1 to control mice
(Supplementary Fig. S7e). These results suggest that the mechanism
for nSP70-induced pregnancy complications might involve coagu-
lation. However, it has recently been shown that heparin acts in

many ways other than as an anticoagulant39–42. The anti-comp-
lement activation effect of heparin has been suggested to be impor-
tant in mitigating pregnancy complications40. Complement
activation induces neutrophil activation and this may lead to placen-
tal dysfunction, miscarriage, fetal growth restriction or pre-eclamp-
sia43,44. Here, we have shown that the number of granulocytes in
nSP70-treated mice is significantly higher than in control mice
(Supplementary Fig. S5), indicating that nSP70 might have
induced complement activation, which may have subsequently
activated neutrophils and systemic inflammation.

Some reports have shown that heparin may also act as a placental
growth factor, because heparin is known to inhibit placental apoptosis,
stimulate placental proliferation and enhance the effect of several
growth factors39,41,42. Moreover, oxidative stress in the placenta is
known to cause placental dysfunction and to induce pregnancy
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complications45. Nanomaterials have been reported to cause oxidative
stress, which in turn induces cell apoptosis and inflammation22,46,47.
Therefore, the pregnancy complications observed here might have
been caused by oxidative stress induced by nSP70.

We have observed that the induction of oxidative stress in cells
and the activation of the coagulation pathway in mice treated with
nSP70-C and nSP70-N were lower than those observed in cells and
mice treated with nSP70 (unpublished data). Therefore, we speculate
that the lower activation of coagulation, complement and oxidative
stress in the placenta of mice treated with nSP70-C and nSP70-N
might have prevented pregnancy complications in those mice. It
has recently been shown that nanomaterials become coated with
serum proteins and induce different cellular responses by binding
to proteins48. In addition, different surface characteristics, such as
surface charge, are known to influence the binding affinities of

proteins to nanomaterials48. Therefore, the differences in protein
binding among nSP70, nSP70-C and nSP70-N might have given
rise to differences in the fetotoxicity of the nanomaterials.

It should be noted that there are differences between mouse and
human placentae, such as the greater role of yolk sac placentation in
the mouse and the anatomy in the labyrinth49,50 (Fig. 3a). The yolk
sac plays a significant role in material transport frommother to fetus
in mice, especially before the placental circulation is established49.
Therefore, the accumulation of nSP70 in the yolk sac should be
investigated to understand the accumulation mechanism of nano-
particles in fetuses. In the mouse placenta, three trophoblast layers
embrace the fetal vasculature in the labyrinth layer, whereas in the
human term placenta, a single syncytial layer with an underlying
trophoblast stem cell layer is present in the villi49,50. As these ana-
tomical and structural differences might affect nanoparticle
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uptake and distribution, we cannot extrapolate our data about the
placental distribution of nanoparticles, or placental dysfunction
induced by nanoparticles, to humans. Additional studies that
examine the penetration efficiency of nanoparticles into the

human placenta (using ex vivo human placental tissue) are
needed, as are studies that focus on the relationship between preg-
nancy complications and the amount of nanoparticles in the
human placenta.
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two consecutive days (GD16 and GD17). a–e, At GD18, the area of the placenta (a) and the spongiotrophoblast layer (b) and the ratios of the
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Fig. 3l,m and was quantitatively analysed. All data represent means+s.e.m. (n¼ 11–20; *P,0.05 and **P, 0.01 by ANOVA).
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Conclusion
Of the materials studied here, nSP70 and nano-TiO2 induced fetal
resorption and restricted the growth of fetuses in pregnant mice,
whereas fullerene C60 did not induce these complications. nSP70
and nano-TiO2 were observed in the placenta, fetal liver and fetal
brain, and nSP70 induced complications only at the highest concen-
tration (0.8 mg per mouse) administered. The detrimental effects
seen in nSP70-treated mice were linked to structural and functional
changes in the placenta. Modification of the surface of nSP70 with
carboxyl or amine groups abrogated the negative effects, suggesting
the importance of surface charge. Although the nSP70 and nano-
TiO2 were mainly designed for experimental and industrial use,
and not for cosmetics or food, we suggest that the potential fetotoxi-
city of these and other nanomaterials should be investigated
more carefully.

Methods
Particles. nSP70, nSP300, mSP1000, nSP70-C and nSP70-N, as well as nSP70,
nSP300 and mSP1000 labelled with DY-676 (excitation and emission wavelengths of
674 and 699 nm, respectively), were purchased from Micromod Partikeltechnologie.
Rutile-type TiO2 particles with a diameter of 35 nm (designated nano-TiO2, Tayca
Corporation) were also used. Polyvinylpyrrolidone (PVP)-wrapped fullerene C60
was provided by Vitamin C60 BioResearch Corporation. The nanoparticles were
used after 5 min of sonication (280 W output (Ultrasonic Cleaner, AS One) and
1 min of vortexing.

Mice. Pregnant BALB/c mice (8–10 weeks) were purchased from Japan SLC. The
experimental protocols conformed to the ethical guidelines of Osaka University and
the National Institute of Biomedical Innovation, Japan.

In vivo imaging. In vivo fluorescence imaging was performed with an IVIS 200
small-animal imaging system (Xenogen). At GD16, pregnant BALB/c mice were
injected with 100 ml (0.8 mg per mouse) DY-676-labelled nSP70, nSP300, mSP1000,
nSP70-C, nSP70-N or PBS (control), intravenously through the tail vein. At 24 h
post-injection, the mice were anaesthetized, and images were obtained with a cy5.5
filter set (excitation/emission, 615–665 nm/695–770 nm). Imaging parameters
were selected and implemented with Living Image 2.5 software (Xenogen).

TEM analysis. Pregnant BALB/c mice were treated with 100 ml (0.8 mg per mouse)
of nSP70, nSP300, mSP1000, nSP70-C, nSP70-N or nano-TiO2, intravenously
through the tail vein, on two consecutive days (GD16 and GD17). At GD18, mice
were killed after being anaesthetized, and the placenta, fetal liver and fetal brain were
fixed in 2.5% glutaraldehyde for 2 h. Small pieces of tissue collected from these
samples were washed with phosphate buffer, postfixed in sodium cacodylate-
buffered 1.5% osmium tetroxide for 60 min at 4 8C, dehydrated using a series of
ethanol concentrations, and embedded in Epon resin. The samples were examined
under a Hitachi electron microscope (H-7650; Hitachi).

Fetotoxicity. Pregnant BALB/c mice were treated with 100 ml of nSP70 (0.2 mg,
0.4 mg or 0.8 mg per mouse), nSP300 (0.8 mg per mouse), mSP1000 (0.8 mg per
mouse), nSP70-C (0.8 mg per mouse), nSP70-N (0.8 mg per mouse), nano-TiO2
(0.8 mg per mouse), fullerene C60 (0.8 mg per mouse) or PBS (control),
intravenously through the tail vein, on two consecutive days (GD16 and GD17). All
mice were killed after being anaesthetized at GD18. Blood samples were collected in
tubes containing 5 IU ml21 heparin sodium, and plasma was harvested. The rate of
fetal resorption was calculated (number of resorptions/total number of formed
fetuses and resorptions). The fetuses and placentae of each mouse were excised and
weighed, and the weight of the uterus calculated as the sum of the placental and fetal
weights. To study the effects of heparin in nSP70-treated mice, pregnant BALB/c
mice were treated with 100 ml (0.8 mg per mouse) nSP70 or PBS (control)
intravenously through the tail vein on two consecutive days (GD16 and GD17). The
same mice were treated with heparin (Sigma-Aldrich, 10 U) intraperitoneally on two
consecutive days (GD16 and GD17), twice a day, 3 h before nSP70 treatment and 3 h
after nSP70 treatment.

Histological examination. After fixing placentae in 10% formalin neutral buffer
solution overnight, tissues were washed in PBS, dehydrated in a graded series of
ethanol and xylene solutions, and embedded in paraffin. Sections (2 mm) were cut
with a microtome. Sections were deparaffinized, rehydrated in a graded series of
ethanols, and stained with H&E or PAS. Stained sections were dehydrated in a series
of ethanols and mounted using permount. Representative histological images were
recorded with a charge-coupled device (CCD) digital camera fixed to a microscope.
The areas of the placenta, spongiotrophoblast layer and labyrinth layer were assessed
by examining light microscopy images (Olympus) of the PAS-stained sections and
were quantitatively analysed with Image J Imaging System Software Version 1.3
(National Institutes of Health). The circumferential total length of villi was assessed
by examining light microscopy images of the H&E-stained sections and
quantitatively analysed with Image J Imaging System Software Version 1.3. The

presence of apoptotic cells in placental sections was analysed by TUNEL assay
(Millipore). The tissue was counterstained with methyl green. Photographs of
TUNEL (brown) and methyl green (light blue) staining were captured at three
randomly selected fields in the spongiotrophoblast layer. TUNEL-positive nuclei
(apoptotic nuclei) and methyl green-stained nuclei (total nuclei) were counted in the
spongiotrophoblast layer. The apoptotic index in each section was calculated as the
percentage of spongiotrophoblast nuclei stained TUNEL-positive divided by the
total number of methyl green-stained nuclei found within the
spongiotrophoblast layer.

Statistical analysis. All results are presented as means+standard error of the mean
(s.e.m.). Statistical significance in the differences was evaluated by Student’s t-tests or
Tukey’s method after analysis of variance (ANOVA).
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