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Psychoactive drugs, such as THC and alcohol, are widely 
reported to impair motor coordination by targeting the cen-
tral nervous system (CNS)1,2. Notably, cannabis and alco-

hol have been largely reported to be used in combination, which 
causes severe motor disorders3. Social research studies from vari-
ous institutions, including the National Highway Traffic Safety 
Administration of the United States, have warned that combined 
use of cannabis and alcohol can cause severe motor deficits, lead-
ing to compromised traffic safety and increased crashes4–6. Animal 
studies have also shown that systemic ethanol administration sig-
nificantly enhances THC-induced motor incoordination in mice7,8. 
Although the abnormally enhanced toxicity caused by cannabis and 
alcohol combination has attracted widespread attention, the mecha-
nism for such synergistic reinforcement remains unclear.

Drug synergism is generally achieved through specific drug tar-
gets such as membrane receptors9. A large amount of evidence has 
confirmed that THC and ethanol share several targets on the cell 
membrane, such as CB1R and GlyRs10–17. The CB1R is considered 
one of the most abundant G-protein-coupled receptors in the CNS 
and it is ubiquitously expressed in the axons and presynaptic termi-
nals of neurons in the CNS11,12. GlyR is chloride-permeable penta-
meric ligand-gated ion channel17. Synaptic GlyR mainly mediates 
inhibitory neurotransmission in the spinal cord and brainstem18, 
whereas extrasynaptic GlyR maintains excitability homeostasis in 
the cerebrum19,20. Both CB1R and GlyR are inextricably linked to 
motor functions. CB1R in various brain regions such as the cerebel-
lum, dorsomedial striatum (DMS) and motor cortex (M) is crucial 
for motor functions such as motor coordination, motor learning 

and locomotor activity11,12,21,22. GlyR dysfunction is also associated 
with various motor disorders including muscle stiffness, myoclonic 
jerks, exaggerated startle responses and spasms23–25.

Although emerging evidence suggests that THC and ethanol can 
activate or potentiate the function of CB1R and GlyR11,12,16,17, whether 
the two receptors are involved in the synergistic effects of THC 
and ethanol on motor coordination (SETEM) remains unknown. 
In this study, we conducted cellular and behavioral experiments 
using various approaches, including c-Fos immunohistochemistry, 
electrophysiological recording, chemogenetic manipulations, mass 
spectrometry, imaging flow cytometry, live animal imaging and 
behavioral tests, to reveal the molecular and cellular mechanisms 
underlying the SETEM and develop potential cures.

Results
Cerebellar lobules 4/5 mediate the SETEM. To assess the motor 
coordination of mice, we constructed an accelerating rotarod (AR) 
behavioral paradigm20. Mice received intraperitoneal (i.p.) admin-
istration of various doses of THC and ethanol, either alone or in 
combination. THC and ethanol both dose-dependently caused 
motor incoordination, as reflected by reduced latency in the AR 
test (Extended Data Fig. 1a–d)26. Although low-dose THC (i.p. 
1.0 mg kg−1) was insufficient to affect AR performance (Extended 
Data Fig. 1b), the combination of the THC with various doses of eth-
anol (i.p. 0.5, 1.0 and 2.0 g kg−1) caused more severe motor incoordi-
nation than ethanol alone (Fig. 1a,b and Extended Data Fig. 1e–g),  
suggesting a synergistic effect. Furthermore, such synergistic effect 
of THC and ethanol showed no differences between male and 
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female mice (Extended Data Fig. 1h–l), suggesting that there is no 
sexual dimorphism of the SETEM. The blood ethanol concentra-
tion (BEC) ranged from 33 mg dl−1 to 270 mg dl−1 at 5–45 min after 
i.p. administration of 0.5, 1.0 and 2.0 g kg−1 ethanol; however, THC 
administration had no effect on the BEC (Extended Data Fig. 1m–
o), suggesting that the synergistic effect may not occur in periphery.

Among all brain regions, the cerebellum, M and DMS are most 
commonly associated with motor coordination21,22,27,28. To reveal the 
brain regions critical for the SETEM, we examined the expression  

level of c-Fos, an immediate marker of neuronal activation29. 
Various nuclei including the DMS, anterior cerebellar PC layer, M1 
and M2 were activated during the AR test, as reflected by signifi-
cant increases in c-Fos immunofluorescence signals in these brain 
nuclei (Fig. 1c,d and Extended Data Fig. 2a–c). Notably, activation 
of the anterior cerebellar PC layer, but not the DMS or M1/M2, 
was blocked by combined treatment with i.p. THC and i.p. etha-
nol (Fig. 1d). c-Fos expression in the anterior cerebellum lobules 
1–5 (1–5Cbs) PC layer, but not the 6–10Cb PC layer, was obviously 
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Fig. 1 | Identification of the role of 4/5Cb neurons in the SETEM. a, Schematic showing the timeline of drug administration and AR procedure. b, Effects of 
THC (i.p. 1.0 mg kg−1) and ethanol (i.p. 0.5 g kg−1), either alone or in combination, on AR latency of mice. c,d, Representative images (c) and numbers of c-Fos+ 
cells (d) from immunohistochemistry analysis of c-Fos-positive neurons in various brain regions of mice. Veh, vehicle; M1, motor cortex 1; M2, motor cortex 2. 
Scale bar, 25 μm. n = 3 mice per group. e,f, Representative images (e) and numbers of c-Fos+ cells (f) from immunohistochemistry analysis of c-Fos-positive 
neurons in various cerebellar lobes. Scale bar, 500 μm. n = 7–10 mice per group. g, Schematic showing the timeline of drug injections and AR procedure.  
h, Effects of THC (intra-4/5Cb, 5 μg μl−1) and ethanol (i.p. 0.5 g kg−1) in combination on the AR latency of mice. i, Schematic showing virus injection and 
timeline of the chemogenetic experimental procedure. j, Representative images showing the EGFP or mCitrine signals in the injection sites of the 4/5Cb 
of mice. Scale bar, 1 mm. k, Effects of CNO (i.p. 1.0 mg kg−1) on AR latency of mice. l, Schematic showing virus injection and chemogenetic experimental 
procedure. m, Effects of CNO (i.p. 1.0 mg kg−1) on the SETEM caused by THC (i.p. 1.0 mg kg−1) and ethanol (i.p. 0.5 g kg−1) combination in mice. Values are 
represented as means ± s.e.m., n per group. Exact P values are shown. Statistical differences were determined by a one-way analysis of variance (ANOVA) 
followed by Tukey’s post hoc multiple-comparison test (b,h) or a two-way ANOVA followed by Tukey’s post hoc multiple-comparison test (d,f,k,m).
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increased after the AR test (Fig. 1e,f); however, of all the anterior 
cerebellar lobules, only lobules 4/5 (4/5Cb) showed a significant 
decrease in c-Fos expression in response to THC and ethanol com-
bination, suggesting a critical role of 4/5Cb in the SETEM (Fig. 1e,f).  
We then examined whether ethanol promotes THC actions 
directly in 4/5Cb. THC (5 μg in 1 μl) was microinjected into 4/5Cb 
(intra-4/5Cb) through permanently implanted stainless steel guide 
cannulas 5 min before i.p. various doses of ethanol administration 
(Fig. 1g). This combination of THC and ethanol still significantly 
induced the SETEM in mice (Fig. 1h and Extended Data Fig. 2d,e).

To explore the functional role of 4/5Cb in motor coordination, 
we virally expressed a pharmacogenetic neural inhibitor hM4Di–
mCitrine (AAV2/9–hSyn–hM4Di–mCitrine) or a control enhanced 
green fluorescent protein (EGFP) (AAV2/9–hSyn–EGFP) in the 
4/5Cb of mice30 (Fig. 1i). Histological analysis confirmed that 
hM4Di–mCitrine and EGFP were largely confined to the 4/5Cb 
(Fig. 1j). Chemogenetic inactivation of 4/5Cb neurons by clozapine 
N-oxide (CNO), an engineered ligand of hM4Di, indeed significantly 
reduced the 4/5Cb c-Fos expression level (Extended Data Fig. 2f)  
and motor coordination in mice transfected with hM4Di but not 
in those transfected with the control EGFP (Fig. 1k). Furthermore, 
chemogenetic activation of 4/5Cb neurons using AAV2/9–hSyn–
hM3Dq–mCitrine restored c-Fos expression in the 4/5Cb (Fig. 1l and 
Extended Data Fig. 2g) and evidently inhibited the SETEM in mice 
carrying hM3Dq–mCitrine (Fig. 1m and Extended Data Fig. 3a,b),  
but it did not affect their basic motor skills (Extended Data Fig. 3c–e).  
Taken together, all these results suggest that 4/5Cb is a pivotal brain 
region for motor coordination and the SETEM.

THC and ethanol synergistically reduce PC excitability. PCs con-
stitute the sole output of the cerebellar cortex and their dysfunction 
is a hallmark of motor incoordination31. We therefore examined 
whether THC and ethanol alter the electrophysiological properties 
of 4/5Cb PCs. To achieve this, we conducted whole-cell patch-clamp 
recordings of miniature excitatory postsynaptic currents (mEPSCs) 
of the PCs in the 4/5Cb. Combined incubation of low-dose THC 
(100 nM) and ethanol (20 mM) significantly reduced the frequency, 
but not amplitude, of the mEPSCs of PCs (Fig. 2a–c), indicating a 

presynaptic change. It is worth noting that, at such low doses, either 
THC or ethanol alone did not affect the mEPSCs (Fig. 2a–c). We 
also investigated the overall incoming inhibitory events in 4/5Cb 
PCs by measuring miniature inhibitory synaptic currents (mIPSCs). 
The results showed that neither the frequency nor the amplitude of 
mIPSCs was affected by THC and ethanol, either alone or in combi-
nation (Extended Data Fig. 4).

Next, we conducted whole-cell patch-clamp recordings of electri-
cally evoked action potential (AP) in 4/5Cb PCs. The combination 
of low-concentration THC and ethanol incubation caused a signifi-
cant increase in AP threshold and rest membrane potential (RMP) 
and a notable decrease in the number of AP spikes (Fig. 2d–g).  
These parameters were not affected by either THC or ethanol alone. 
All these results demonstrate that THC and ethanol synergistically 
decrease PC excitability.

CB1R and GlyR in the 4/5Cb contribute to the SETEM. THC 
interacts with multiple CNS targets, mostly membrane receptors 
such as CB1/2R, GlyR and transient receptor potential vanilloid 2 
(TRPV2)11,12, which are widely distributed in the cerebellum32–34. 
We next performed pharmacological tests to identify the specific 
targets involved in the SETEM (Fig. 3a). Systemic administration 
of either the CB1R antagonist AM251 (Fig. 3b and Extended Data  
Fig. 5a,b) or GlyR antagonist strychnine (Fig. 3c and Extended Data 
Fig. 5c) significantly diminished the SETEM in a dose-dependent 
manner, whereas the CB2R antagonist AM630 (Fig. 3d and Extended 
Data Fig. 5d) and TRPV2 antagonist tranilast (Fig. 3e and Extended 
Data Fig. 5e) did not affect the various doses of ethanol-associated 
SETEM (Extended Data Fig. 5f–i), suggesting specific involvement 
of CB1R and GlyR, but not CB2R or TRPV2, in the SETEM.

We next performed local microinjection to examine the role of 
CB1R in the 4/5Cb in the SETEM (Fig. 3f). Intra-4/5Cb injection of 
AM251 significantly inhibited the SETEM (Fig. 3g and Extended 
Data Fig. 5j). Previous studies indicated that Serine 296 of GlyRα1 
is a critical site for cannabinoid–GlyR interaction20,35–39. We there-
fore verified the role of 4/5Cb GlyRα1 in the SETEM using GlyRα1 
S296A knock-in (GlyRα1S296A) mice (Fig. 3h). The synergistic effect 
of THC and ethanol was significantly inhibited in mice carrying the 
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GlyRα1S296A mutation (Fig. 3i and Extended Data Fig. 5k–m). Taken 
together, these results indicate that CB1R and GlyR in the 4/5Cb 
may act as the primary targets of THC and ethanol to produce the 
SETEM.

4/5Cb CB1R mediates the inactivation of PCs through a presyn-
aptic mechanism. Next, we examined whether blocking CB1R in 
the 4/5Cb can affect the synergistic effect of THC and ethanol on 
PC excitability. The THC and ethanol combination significantly 
increased the AP threshold and RMP and decreased the AP spike 
number, suggesting inactivation of PC neuronal function. Such effect 
of THC and ethanol was significantly inhibited by pre-incubation of 
AM251, as reflected by the significantly reduced AP threshold and 
RMP and increased number of AP spikes (Fig. 4a–d).

PCs have been reported to receive the majority of excitatory 
inputs from parallel fibers of granule cells in the cerebellar gran-
ule layer and climbing fibers of neurons in the inferior olive40. We 
next recorded the mEPSCs of 4/5Cb PCs. As demonstrated above, 
combined use of THC and ethanol significantly reduced the mEPSC 
frequency, but not amplitude (Fig. 4e–g), suggesting a presynaptic 
impairment of glutamate release. This reduction in mEPSC fre-
quency was largely restored by AM251 (Fig. 4e–g). Thus, these 
results suggest a role of CB1R in mediating the presynaptic inhibi-
tion of excitatory transmission caused by THC plus ethanol, which 
possibly leads to the inactivation of PCs and the subsequent SETEM.

4/5Cb GlyR mediates the inactivation of PC through an extrasyn-
aptic mechanism. The GlyR, an important target of cannabinoids16,17, 
has been reported to be distributed widely in the cerebellum34. 
We next used GlyRα1S296A mutant mice to block the interaction 
between THC and GlyR41,42. Treatment with THC and ethanol 
at low concentrations significantly increased the AP threshold  

and RMP and decreased the number of AP spikes in PCs of 
GlyRα1WT mice (Fig. 5a–d). These effects were significantly dimin-
ished in the GlyRα1S296A mice, suggesting that specific blockade of 
the cannabinoid–GlyR interaction could restore the activity of PCs 
suppressed by the combined use of THC and ethanol (Fig. 5a–d).

The distribution of GlyR in 4/5Cb PCs was then determined 
by patch-clamp slice recording. Puffing glycine induced obvious 
strychnine-sensitive currents (IGly) in all (45 of 45) measured PCs 
in the cerebellar slice, suggesting that all PCs express GlyR (Fig. 5e). 
Glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) 
were detected in fewer than 3% of all measured PCs (1 of 45), indi-
cating that GlyR is not usually located in the postsynaptic site of 
4/5Cb PCs (Fig. 5f). Meanwhile, puffing strychnine induced small 
but obvious tonic currents (Itonic), which are generally mediated by 
extrasynaptic ion channels, in about 97% (44 of 45) of PCs, suggest-
ing that most GlyRs on PCs are extrasynaptic (Fig. 5g).

We next examined whether the extrasynaptic GlyRs (esGlyRs) 
are synergistically regulated by THC and ethanol. Although 
pre-incubation with either THC or ethanol alone at low concen-
trations failed to affect Itonic, their combination caused significant 
potentiation of the Itonic in the 4/5Cb PCs (Fig. 5h). This potentia-
tion was considerably blocked by the S296A mutation of GlyRα1 in 
transgenic mice (Fig. 5i). Taken together, these results demonstrate 
that the function of esGlyR is synergistically boosted by THC plus 
ethanol, very likely leading to the inactivation of 4/5Cb PCs that 
results in the SETEM.

Ethanol elevates the THC level in the cell membrane. Cannabinoids 
are characterized by high lipophilicity and are primarily distributed in 
the cell membrane43,44. A question that has so far remained unsolved 
is how ethanol enhances THC actions at the cellular level. We there-
fore directly conjugated the THC compound with cyanine 7 (Cy7), a 
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classic near-infrared fluorophore, to visualize and quantify the THC 
in HEK293 cells and the neuroblastoma cell line Neuro 2A (N2A) 
using flow cytometry (Fig. 6a). THC–Cy7 still induced a remarkable 
decrease in intracellular cAMP concentration in HEK293 cells express-
ing CB1R and a significant potentiation of puffed glycine-triggered 
currents (IGly) in HEK293 cells expressing GlyRα1, suggesting that the 
Cy7-conjugation does not affect the pharmacological properties of 
THC (Fig. 6b,c). HEK293 and N2A cells were incubated with THC–
Cy7 for 1 h and then analyzed by standard flow cytometry (SFC)  
(Fig. 6d and Extended Data Fig. 6a–h). The median fluorescence 
intensity of HEK293 cells or N2A cells incubated with THC–Cy7 
was significantly larger than that of cells incubated with Cy7 only 
(Fig. 6e–h and Extended Data Fig. 6i–l). More notably, ethanol treat-
ments indeed induced a considerable increase in THC–Cy7 levels in 
HEK293 and N2A cells (Fig. 6e–h).

We further examined the cellular level of THC using 
high-performance liquid chromatography mass spectrometry 
(HPLC–MS) (Fig. 6i). HEK293 and N2A cells were incubated with 
various doses of THC to construct a calibration curve for method 
validation (Extended Data Fig. 6m,n). Three major fragments of 
THC at m/z = 179, 191 and 245 were identified in the incubation buf-
fer (Extended Data Fig. 6o,p). The THC contents in the HEK293 and 
N2A cells were then obtained by subtracting the amount of THC in 
the supernatant. The results showed that ethanol remarkably increased 
the level of THC in the whole-cell lysate, as reflected by a significantly 
reduced THC concentration in the incubation buffer (Fig. 6j–m).

We then analyzed the membrane-anchored THC–Cy7 in HEK293 
and N2A cells using imaging flow cytometry (IFC)45. Based on IFC, 
the focused HEK293 or N2A cells were selected using gradient root 
mean square (RMS) (Extended Data Fig. 7a,b) and then gated to sin-
gle cells based on area versus aspect ratio (Extended Data Fig. 7c,d).  
These single-focused cells were then used for membrane fluores-
cence analysis. Ethanol co-incubation significantly enhanced the 
membrane fluorescence intensity of THC–Cy7 in HEK293 and 
N2A cells (Fig.6n–s and Extended Data Fig. 7e–j), indicating that 
ethanol promotes membrane accumulation of THC.

Ethanol boosts THC levels in the brain. To examine the effect 
of ethanol on THC distribution in the brain, we conducted live 
animal imaging, which has been regarded as an efficient tool 
for real-time visualization of drug distribution in live animals  
(Fig. 7a). Following i.p. injection, the fluorescence of THC–Cy7 was 
observed in the brain and other organs (Extended Data Fig. 8a).  
Various doses of ethanol treatments accelerated the accumula-
tion of THC in the brain and caused significant increases in the 
intensity of THC during the 120 min after the THC–Cy7 injection  
(Fig. 7b,c and Extended Data Fig. 8b–e), suggesting that ethanol pro-
motes the ability of THC crossing the blood–brain barrier (BBB).

We then performed additional in vitro and in vivo experiments 
to evaluate the effect of low-dose ethanol on BBB permeability 
using a FITC-dextran trans-epithelial permeability assay46. We first 
constructed the in vitro BBB model using bEnd.3 endothelial cells 
(Extended Data Fig. 8f), which have been evidenced to be a conve-
nient and useful model for evaluating BBB function47–49. The results 
showed that the low-dose ethanol (20 mM, 5 min) significantly 
increased the permeability of FITC-dextran (1.0 mg kg−1, 1 h) cross-
ing the layer of endothelial cells, reflected by the increased FITC 
intensity in the lower chamber of the Transwell (Extended Data 
Fig. 8g). To evaluate the in vivo effect of low-dose ethanol on BBB, 
FITC-dextran (i.p. 50 mg kg−1) was injected into C57BL/6J mice. 
After circulating for 1 h, the mice were injected with saline or ethanol 
(i.p. 0.5 g kg−1) and then were killed 5 min after ethanol administra-
tion. The immunofluorescence staining and brain homogenization 
results showed that the low-dose ethanol significantly increased the 
FITC intensity in the various brain regions, especially in the cer-
ebellum (Extended Data Fig. 8h,i). Taken together, these results 
provided evidence that low-dose ethanol in a short period of time 
indeed increases the BBB permeability, which likely leads to the 
elevated brain level of THC.

Next, we performed HPLC–MS to measure the concentration of 
THC in the blood and brain tissue after i.p. THC injection (Fig. 7d). 
Various doses of standard THC were used to construct a calibration 
curve for method validation (Extended Data Fig. 8j). Three major 
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characteristic peaks of THC at m/z = 179, 191 and 245 were detected 
in the brain tissue and plasma (Fig. 7e and Extended Data Fig. 8k). 
Ethanol significantly increased the intensity of plasma THC over 
the 45 min, especially during the first 15 min, after THC injection 
(Extended Data Fig. 8l). Furthermore, the THC intensity in the cer-
ebellum of mice co-treated with THC and ethanol was consider-
ably higher than that in mice treated with THC alone (Fig. 7f,g and 
Extended Data Fig. 8m). Together, these results demonstrate that 
ethanol can facilitate THC accumulation in the brain, possibly by 
boosting the BBB permeability of THC.

A synthetic cannabinoid specifically disrupting THC–GlyR 
interaction inhibits the SETEM. The above results indicate 
that antagonists against CB1R or GlyR can efficiently inhibit the 
SETEM, making them potential therapeutic treatments for the 
psychiatric toxicity caused by THC and alcohol combination; 
however, antagonism of CB1R or GlyR can inevitably induce a 
series of psychiatric side effects such as anxiety, depression and 
seizure20,50,51. Di-desoxy-THC (DDT), a chemically modified 
THC with both hydroxyl and oxygen groups removed (Fig. 8a 
and Extended Data Fig. 9a), has been shown to selectively dis-
rupt the cannabinoid–GlyR interaction without affecting the 
basic functions of CB1R and GlyR35–37. We therefore examined the  

therapeutic effects of DDT on the SETEM and whether DDT causes 
any side effects related to CB1R and GlyR. Electrophysiological 
slice recording showed that DDT significantly suppressed the 
THC and ethanol combination-induced potentiation of 4/5Cb PC 
esGlyR-mediated Itonic (Fig. 8b). DDT also considerably inhibited 
the hyperexcitability of PCs caused by THC and ethanol com-
bination, as reflected by the restored AP threshold, RMP and 
number of AP spikes (Fig. 8c–f). Furthermore, DDT significantly 
diminished the various doses of ethanol-associated SETEM in a 
dose-dependent manner (Fig. 8g,h and Extended Data Fig. 9b) 
without affecting ethanol alone induced motor incoordination 
(Extended Data Fig. 9c) and basic motor coordination of mice 
(Fig. 8i).

Chronic ethanol exposure (CEE) is a common clinical alcohol 
abuse condition and cannabis is always co-used in chronic alcohol 
users52,53. We thus constructed the CEE model and examined the effect 
of CEE on SETEM (Extended Data Fig. 9d). Acute i.p. administration 
of THC also caused SETEM in CEE mice (Extended Data Fig. 9d–f). 
Such CEE-associated SETEM could be significantly inhibited by DDT 
(Extended Data Fig. 9e) and AM251 (Extended Data Fig. 9f), suggest-
ing a similar involvement of GlyR and CB1R in the SETEM associated 
with CEE and a potential therapeutic role of DDT in clinical situation 
of long-term alcohol abuse with cannabinoid use.
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We next evaluated the possible effects of DDT on a series of behav-
iors including the startle reflex, righting reflex, locomotor activity and 
emotion, which have been reported to be influenced by antagonism of 
GlyR or CB1R50,54. DDT from low to high doses had no effects on the 
acoustic startle response (Fig. 8j), the righting reflex time (Fig. 8k), the 
percentage of open arm entries and time in elevated plus maze tests 
(Fig. 8l–n) and the percentage of center zone entries, time and trav-
eling distance in open field tests (Fig. 8o–s). Furthermore, the DDT 
did not affect many other behavioral manifestations of mice such as 
gait, grip strength, body temperature and food intake, suggesting the 

nontoxicity of DDT (Extended Data Fig. 9g–m). Taken together, these 
results suggest that DDT can be regarded as an effective candidate 
medication for preventing and treating the SETEM without inducing 
any CB1R/GlyR-related side effects.

Discussion
THC and alcohol, the two most commonly used psychoactive 
drugs, have been reported to be frequently used in combination 
and to cause synergistic psychoactive effects3. In the present study, 
we provided several lines of evidence regarding the mechanism by 
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which THC and alcohol synergistically cause severe motor incoor-
dination. For instance, ethanol enhances the ability of THC to cross 
the BBB, leading to elevated brain THC levels. Furthermore, ethanol 
increases the cellular membrane level of THC, which in turn poten-
tiates function of synaptic receptors including presynaptic CB1R 
and esGlyR in the cerebellum and therefore synergistically inacti-
vates the cerebellar PCs, finally leading to motor incoordination. In 
short, the SETEM seems to be a comprehensive result of the etha-
nol–THC interaction at multiple levels, from the molecular level to 
the cellular level and to the brain circuit level.

Presynaptic CB1Rs and postsynaptic esGlyRs are identified as two 
critical targets of THC and ethanol in SETEM in the present study. 
Blocking either one of the two targets partially reverses the neuronal 
excitability caused by THC and ethanol combination and suppresses 
the SETEM. Nevertheless, some other targets such as cerebellar 
adenosinergic A1 receptor and nicotinic-cholinergic receptors have 
also been reported to be involved in cannabinoid-induced motor 
incoordination7,55,56; however, whether these targets also contribute 
to SETEM is still unknown and remains to be further investigated.

Consistent with our findings, emerging evidence also shows 
that both acute and chronic ethanol usage can increase the perme-
ability of the BBB57–60. For example, acute ethanol administration 
enhances the BBB permeability of catecholamines57. Ethanol leads 
to dysfunction of tight junctions and the BBB via activation of myo-
sin light chain kinase59. Alcohol abuse-induced oxidative stress in 
brain microvascular endothelial cells can lead to BBB breakdown60. 
Furthermore, as reported by previous clinical studies61, the present 
study also finds that ethanol significantly increases the circulatory 
THC level. Considering our finding that ethanol can enhance the 
BBB permeability of THC, higher levels of ethanol in the blood may 
be the basis for more THC entering the brain. Thus, in the presence 

of ethanol, a large amount of THC may cross the BBB and act in 
regions of the brain including the cerebellum, therefore leading to 
more severe psychoactive effects.

In addition to acting on the cerebellum, THC has also been 
reported to cause motor incoordination via disrupting autophagy 
in striatum62. It is likely that such effect in striatum may also con-
tribute to the SETEM, as ethanol seems to increase the THC level in 
the whole brain. Although the present study finds that ethanol and 
THC combination did not affect the c-Fos expression of striatum, 
such combination may synergistically affect autophagy in the stria-
tum and thereby lead to the SETEM; however, whether autophagy 
in the striatum is involved in the SETEM still needs further research.

Cannabinoids, as lipophilic molecules, can remain in or diffuse 
across the cell membrane43,44. Our results have shown that ethanol 
can increase membrane THC levels. Consistent with this finding, 
there is a large amount of evidence that ethanol can influence the 
physical structure of the cell membrane, causing the phospholipid 
bilayers to be more fluid and permeable63–65. For instance, acute 
ethanol exposure changes the lipid bilayer free volume and disrupts 
the phospholipid acyl chain packing of the erythrocyte, mitochon-
drial and synaptosomal membranes, causing the membrane to be 
looser65. Thus, it is likely that the ethanol-induced membrane struc-
tural change is one primary cause of the increased THC concentra-
tion in the cell membrane.

Our results show that ethanol significantly increases the brain 
THC level, resulting in severe motor incoordination. In addition, 
accumulation of THC in the brain can cause many other adverse 
psychoactive effects, including anxiety, addiction, illusion and 
hypothermia11,12,66. Thus, the harmful effects of the combined use 
of ethanol and cannabis can be manifold. Based on our findings, 
several emergency strategies may be effective for clinically treating 
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the acute intoxication caused by THC and ethanol combination, 
such as intravenous injections to dilute blood ethanol, medications 
that can accelerate ethanol metabolism and drugs targeting CB1R or 
GlyR; however, GlyR antagonists are generally neurotoxic and can 
induce neuronal hyperexcitability and seizure20,51,67. CB1R antago-
nists also cause a series of psychiatric side effects such as anxiety, 
depression and suicidal ideation50,68. Thus, DDT, a compound spe-
cifically disrupting THC–GlyR interaction without affecting basic 
CB1R and GlyR functions, as revealed by this study and our previ-
ous studies35–37, may be a potential therapeutic strategy for blocking 

the neural toxicity caused by THC and ethanol combination, with 
minimal side effects.

Methods
Animals. All animal procedures were approved by and performed in accordance 
with the guidelines of the Institutional Animal Care and Use Committee of 
University of Science & Technology of China (permit USTCACUC1901009). Male 
(unless otherwise indicated) C57BL/6J (8 weeks old) (cat. no. 219) obtained from 
Vital River Laboratory Animal Technology Co. were used for various behavioral 
tests, immunohistochemistry, electrophysiological recording and HPLC–MS. 
BALB/c Nude mice (cat. no. 401) of the same age and source with C57BL/6J 
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mice were used for live animal imaging. Male GlyRα1S296A mice (8 weeks old) and 
their wild-type littermates were also used for electrophysiological recording and 
behavioral tests. Genotyping of the GlyRα1S296A mice was performed using the 
following primers: forward: 5′-GAATCTTCCAGGCAACATTTCAG-3′; reverse: 
5′-AGTATCCCACCAAGCC AGTCTTT-3′. All mice were bred and housed under 
a specific-pathogen-free conditions with 12-h dark–light cycle at 21 ± 1 °C and 
55–60% humidity and provided with ad libitum access to water and food (Jiangsu 
Xietong Pharmaceutical Bio-engineering Co., cat. no. 1010088).

Cell cultures. HEK293 cell line (American Type Culture Collection, ATCC) was a 
gift from T. Xue (University of Science & Technology of China) and accompanied 
by authentication documents verifying the identity according to their short tandem 
repeat profiles. HEK293 cells and N2A neuronal cells were cultured in Dulbecco’s 
modified Eagle’s medium (HyClone). bEnd.3 cells (ATCC) were cultured in 
Opti-MEM medium. All cell lines were routinely split with fresh medium every 
3–5 d, when ~80 % confluency was reached. All the media were supplemented with 
10 % fetal bovine serum (FBS; Gibco), penicillin (100 U ml–1) and streptomycin 
(100 µg ml–1). All cell lines were incubated in a humidified atmosphere consisting of 
95% air and 5% CO2 at 37 °C.

Blood ethanol concentration. Male C57BL/6J mice (8 weeks old) (cat. no. 219) were 
i.p. injected with various doses (0.5, 1.0 and 2.0 g kg−1) of ethanol either alone or in 
combination with THC (1.0 mg kg−1). THC was i.p. injected 10 min before ethanol 
administration. The mice were killed and the blood was collected at the time points 
of 0 min, 5 min, 15 min and 45 min after ethanol administration. The blood was then 
centrifuged at 10,000g for 10 min at 4 °C and the plasma was collected. Plasma ethanol 
concentration was measured using an Ethanol Assay kit (ab65343, Abcam) according 
to the manufacturer’s protocol and expressed as mg dl−1.

Mice BBB permeability. FITC-dextran BBB permeability assay was performed 
as previously described69. To assess BBB permeability, male C57BL/6J mice (8 
weeks old) (cat. no. 219) were i.p. injected with 50 mg kg−1 FITC-dextran (MCE, 
60842-46-8, 10 kDa). After circulating for 1 h, the mice were i.p. injected with 
saline or ethanol (0.5 g kg−1) and the mice were killed by transcardial perfusion 
with 0.1 M PBS 5 min after ethanol administration. One hemisphere of the 
cerebellum was isolated, weighed and homogenized in 1% Triton X-100 in 0.1 M 
PBS. FITC-dextran fluorescence (excitation 490 nm and emission 520 nm) was 
then quantified using a fluorescence microplate reader (Synergy H1, BioTek). For 
the visualization of fluorescence penetration in the brain sections, the contralateral 
hemisphere was post-fixed in 4% PFA for 12 h and then sectioned to 40-μm 
sagittal slices and imaged with Tissue FACXS System with a ×20 objective (Tissue 
Gnostics).

FITC-dextran transendothelial permeability assay. The FITC-dextran 
transendothelial permeability assay was performed as previously described46. 
Briefly, bEnd.3 cells (ATCC) were seeded at a density of 2 × 104 cells per well on the 
upper chamber of collagen-coated Transwell in 12-well plates (Corning Transwell) 
and cultured with Opti-MEM medium with 10% FBS. The cell monolayer usually 
reaches confluency after 2 d. The integrity of the cell monolayer was evaluated 
by measuring the transendothelial electrical resistance (TEER) values using a 
Millicell-ERS voltohmmeter (Millipore). The cell monolayers with TEER values 
higher than 300 Ω cm2 were used for the transmigration studies. Before 10 KD 
FITC-dextran (1.0 mg ml−1) dissolved in phenol red-free Opti-MEM medium 
(Gibco, 11058021) was added in the upper chamber, culture medium in the lower 
chamber was replaced with phenol red-free Opti-MEM medium. FITC-dextran at 
1.0 mg ml−1 was added to the upper chamber and then incubated for 1 h, followed 
by the incubation of ethanol at 20 mM for 5 min. Then 100 μl of serum-free 
medium were taken from the lower chamber and the fluorescence (excitation 
490 nm and emission 520 nm) was then quantified using fluorescence microplate 
reader (Synergy H1, BioTek).

The synthesis of THC–Cy7. A solution of Cy7 (73.4 mg, 0.09 mmol), 
4-dimethylaminopyridine (DMAP, 3.10 mg, 9.9 μmol) and 1-ethyl-3-
(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDC.HCl, 26.10 mg, 
0.1125 mmol) in 3 ml freshly distilled DCM was purged with nitrogen under dark 
conditions. THC (27.9 mg, 0.09 mmol) was added and the mixture was stirred at 
room temperature overnight. The reaction was quenched with water and extracted 
with ethyl acetate. The organic phase was combined, dried over anhydrous 
magnesium sulfate and concentrated to a dark brown oil. The crude residue was 
purified by flash chromatography (20:1 ratio of DCM:methanol) to yield THC–
Cy7 (33.10 mg, 35% yield, Rf 0.25 (10:1 ratio of DCM:methanol)) as a dark green 
viscous oil.

Standard flow cytometry. HEK293 and N2A cells were seeded at a density of 
106 cells ml−1 in 35-mm dishes and allowed to grow to 70–80 % confluence. Both 
kinds of cells were washed with 1 ml ice-cooled 0.1 M PBS three times. Cells were 
then suspended with 1 ml ice-cooled 0.1 M PBS, collected in 1.5-ml tubes and 
centrifuged at 600g for 5 min. The supernatant was discarded and the pellet was 
re-suspended with 1 ml ice-cooled 0.1 M PBS. To accurately visualize the amounts 
of THC in the whole cell, THC–Cy7 at 10 μM was added in the suspended cells to 

incubate for 1 h at 37 °C, either alone or in combination with ethanol at 20 mM. 
As a control, Cy7 at 10 μM was also applied to incubate the cells in the same 
manner. After 1 h incubation, cells were immediately placed on ice and then 
centrifuged at 600g for 5 min at 4 °C. The layer of debris from the top of the tube 
was gently removed and cells were washed with 1 ml ice-cooled 0.1 M PBS three 
times. Cells were re-suspended with 1 ml ice-cooled 0.1 M PBS into clean tubes 
for flow cytometry. All tubes were placed on ice and vortexed for 5 s to completely 
dissociate the cells into a single-cell suspension. At least 5,000 events were recorded 
for each sample during flow cytometry analysis. Cells were gated based on FSC-A 
versus SSC-A parameters and these samples were chosen for fluorescence-activated 
cell sorting. The whole-cell fluorescence was measured and analyzed by a BD 
LSRFortessa X-20 cell analyzer equipped with 640 nm excitation laser with 
standard filter setup. Data were acquired using BD FACSDiva v.6 Software system 
(BD Biosciences) and then analyzed using FlowJo v.10 software.

Imaging flow cytometry. IFC was used to visualize THC–Cy7 or Cy7 intensity in 
the cell membrane. HEK293 and N2A cells were cultured and treated in the same 
way as for SFC. Bright-field channel was measured and at least 5,000 events of 
single cells were collected. All cell images were acquired in the INSOIRE software 
on the ImageStream Mark II Imaging Flow Cytometry (Amnis, Merck Millipore) at 
×40 magnification with 640 nm lasers. Cell debris were gated out and the focused 
single cells were identified using the IDEAS v.6.2 software. Gradient RMS was first 
used to find the focused cells; gradient RMS is useful for the selection of focused 
images by measuring large changes of pixel values in the image and is computed 
using the average gradient of a pixel normalized for variations in intensity levels. 
Cells with a gradient RMS value between 40–100 were included for further 
analysis. The focused cells were then gated based on area (size of the focused cells) 
versus aspect ratio (minor axis divided by the major axis of the focused cells) to 
gate single cells. This population of single-focused cells was used for downstream 
membrane fluorescence intensity analysis. The membrane was defined by the 
Dilate module in the IDEAS v.6.2 software. The THC–Cy7 or Cy7 intensity in 
the membrane was analyzed in the IDEAS v.6.2 software. Raw data files of each 
processed sample were obtained using the IDEAS software platform.

Live animal imaging. Live animal imaging of male Balb/c nude mice (8 weeks 
old) (cat. no. 401) was conducted for in vivo imaging of THC–Cy7 and Cy7. 
Balb/c nude mice received i.p. injection of THC–Cy7 at 10 mg kg−1 or Cy7 at 
10 mg kg−1, either alone or in combination with ethanol at 0.5 g kg−1, 1.0 g kg−1 
and 2.0 g kg−1. THC–Cy7 and Cy7 were i.p. injected 5 min after saline or ethanol 
i.p. administration. The mice were then anesthetized with isoflurane (RWD) 
and images were obtained in real-time at various time points after fluorescent 
reagent injection. Each mouse was imaged at 5 min, 30 min, 60 min, 90 min and 
120 min after injection of ethanol administration. The dorsal side of each mouse 
was imaged. Live animal imaging was performed with a Xenogen IVIS Spectrum 
Imaging System (PerkinElmer). An ICG filter (excitation wavelength 745 nm and 
emission wavelength 820 nm) was used for acquiring Cy7 fluorescence imaging 
in vivo. Identical illumination settings, such as exposure time (auto), binning factor 
(8), f/stop (2) and fields of view (25 × 25 cm), were used for acquiring all images 
and fluorescence emission was normalized to photons per second per centimeter 
squared per steradian (p s−1 cm−2 sr−1). The pseudocolor image represents the 
spatial distribution of photon counts within the animal. Regions of interest (ROIs) 
were manually defined. Background fluorescence was measured and subtracted by 
setting up a background measurement. Images were acquired and quantified using 
Living Image v2.5 software (PerkinElmer). The brain area was designated as the 
ROI and the ROI region was manually defined.

Drugs. Most chemicals, including glycine, ethanol, AM251, tranilast, strychnine 
and AM630 were achieved from Sigma-Aldrich. LC–MS-grade acetonitrile and 
methanol were purchased from Honeywell. All solutions were prepared the day 
before experiments with ultrapure water. In patch-clamp recordings, the agonists, 
modulators and antagonists were diluted before experiments with an external 
solution or artificial cerebrospinal fluid. THC and DDT were synthesized by 
USTC-Ruida Joint Laboratory according to the procedure described previously35,70. 
The chemical structure of THC was confirmed by means of electrospray ionization 
tandem mass spectrometry and 1H nuclear magnetic resonance analysis. THC and 
DDT was dissolved in ethanol before further dilution.

Statistical analysis. For behavioral tests, animals with different genotypes were 
picked randomly. For patch-clamp experiments, Purkinje neurons or transfected 
HEK293 cells were randomly picked for recordings. Data were statistically 
compared by one-way ANOVA, two-way ANOVA and unpaired Student’s t-tests 
using GraphPad Prism v.8.0 (GraphPad Software), as indicated in figure legends. 
Average values are expressed as mean ± s.e.m.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
 Source data are provided with this paper.
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Extended Data Fig. 1 | Effects of THC and ethanol on motor coordination and the BEC in mice, Related to Fig. 1. a, Schematic showing the timeline of drug 
administration and AR procedure. b, Effects of THC (i.p., 0.1, 0.3, 0.5, 1.0, 3.0 and 5.0 mg/kg) on AR latency of mice. c, Schematic showing the timeline of 
drug administration and AR procedure. d, Effects of ethanol (i.p., 0.1, 0.3, 0.5, 1.0 and 2.0 g/kg) on AR latency of mice. e, Schematic showing the timeline 
of drug administration and AR procedure. f, Effects of THC and ethanol in combination on AR latency of mice. g, Effects of ethanol (i.p., 1.0 and 2.0 g/
kg) alone or in combination with THC (i.p., 1.0 mg/kg) on AR latency of mice. h, Effects of ethanol on AR latency of female mice. i, Compare of effects 
of ethanol on AR latency between male and female mice. Each data were normalized to its control group. j, Effects of ethanol (i.p., 0.5, 1.0 and 2.0 g/kg) 
alone or in combination with THC (i.p., 1.0 mg/kg) on AR latency in female mice. k,l, Normalized AR latency of female (k) and male (l) mice receiving 
THC (i.p., 1.0 mg/kg) and ethanol (i.p., 0.5, 1.0 and 2.0 g/kg) in combination. Each data were normalized to the related ethanol alone group. m-o, BEC of 
mice treated with i.p. ethanol at 0.5 g/kg (m), 1.0 g/kg (n) or 2.0 g/kg (o) alone with or without i.p. THC (1.0 mg/kg). n = 3 mice per group. Values are 
represented as means ± s.e.m., n per group. Exact P values are shown. Statistical differences were determined by a one-way ANOVA followed by Tukey’s 
post hoc multiple-comparison test (b, d, f-h, j) or a two-way ANOVA followed by Tukey’s post hoc multiple-comparison test (i, k, l, m-o).
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Extended Data Fig. 2 | The synergistic effect of THC and various doses of systemic ethanol on c-Fos immunohistochemistry in various brain regions 
and motor coordination, Related to Fig. 1. a-c Representative images of immunohistochemistry c-Fos positive neurons in DMS, M1 and M2 of mice 
treated with Veh, Veh + AR or THC + ethanol + AR. Scale bar, 25 μm. Veh: vehicle, AR: accelerating rotarod. d, Effects of ethanol alone or in combination 
with THC (intra-4/5Cb., 5 μg/μl) on AR latency of mice. e, Normalized AR latency of mice receiving THC (intra-4/5Cb., 5 μg/μl) and ethanol in 
combination. Each data were normalized to the ethanol group with the same dose of ethanol. f, Effects of CNO (i.p., 1.0 mg/kg) on the number of c-Fos 
positive neurons in cerebellar 4/5Cb of mice transfected with AAV2/9-hSyn-hM4Di-mCitrine with or without AR tests. g, Effects of THC (i.p., 1.0 mg/
kg) + ethanol (i.p., 0.5 g/kg), CNO (i.p., 1.0 mg/kg), or their combination on the number of c-Fos positive neurons in cerebellar 4/5Cb of mice expressing 
AAV2/9-hSyn-hM3Dq-mCitrine with or without AR tests. Values are represented as means ± s.e.m., n per group. Exact P values are shown. Statistical 
differences were determined by a one-way ANOVA followed by Tukey’s post hoc multiple-comparison test (d) or a two-way ANOVA followed by Tukey’s 
post hoc multiple-comparison test (e-g).
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Extended Data Fig. 3 | Effects of chemogenetic activation of 4/5Cb on motor coordination in mice, Related to Fig. 1. a, Schematic showing the 
timeline of chemogenetic experimental procedure. AAV2/9-hSyn-hM3Dq-mCitrine or the AAV2/9-hSyn-EGFP was injected into the 4/5Cb of mice. 
b, Representative images showing the EGFP or mCitrine signals in the injection sites of the 4/5Cb of mice. Scale bar, 1 mm. c, Schematic showing virus 
injection and chemogenetic experimental procedure. AAV2/9-hSyn-hM3Dq-mCitrine or the AAV2/9-hSyn-EGFP was injected into the 4/5Cb of mice. d, 
Representative images showing the EGFP or mCitrine signals in the injection sites of the 4/5Cb of mice. Scale bar, 1 mm. e, Effects of CNO (i.p., 1.0 mg/kg) 
on AR latency of mice expressing hM3Dq or EGFP as a control in the 4/5Cb. Values are represented as means ± s.e.m., n per group. Statistical differences 
were determined by a two-way ANOVA followed by Tukey’s post hoc multiple-comparison test.
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Extended Data Fig. 4 | Effects of THC and ethanol combination on mIPSCs of PCs, Related to Fig. 2. a, Trace records, average frequency and amplitude 
of GABAergic mIPSCs of PCs in 4/5Cb slices of mice. The neurons recorded were treated with THC (100 nM, 5 min) and ethanol (20 mM, 5 min), either 
alone or in combination. b,c, Cumulative probability plot for the inter-event interval (b) and amplitudes (c) for GABAergic mIPSCs of PCs in 4/5Cb slices 
of mice. Values are represented as means ± s.e.m., n per group. Statistical differences were determined by a one-way ANOVA followed by Tukey’s post hoc 
multiple-comparison test.
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Extended Data Fig. 5 | Effects of various antagonists on SETEM and motor coordination in mice, Related to Fig. 3. a,b, Effects of AM251 (i.p., 5.0 mg/
kg) on the SETEM caused by THC (i.p., 1.0 mg/kg) and ethanol (i.p., 0.5, 1.0 and 2.0 g/kg) combination in male (a) and female (b) mice. c-e, Effects of 
strychnine (i.p., 1.0 mg/kg) (c), AM630 (i.p., 5.0 mg/kg) (d) and tranilast (i.p., 300 mg/kg) (e) on the SETEM caused by THC (i.p., 1.0 mg/kg) and ethanol 
(i.p., 1.0 and 2.0 g/kg) combination in mice. Stry: strychnine; Trani: Tranilast. f-i, Effects of AM251(f), strychnine (g), AM630(h) and tranilast (i) on AR 
latency of mice. j, Effects of AM251 (intra-4/5Cb., 5 μg /μl) on the SETEM caused by THC (i.p., 1.0 mg/kg) and ethanol (i.p., 1.0 and 2.0 g/kg) combination 
in mice. k, Effects of THC (intra-4/5Cb., 5 μg/μl) and ethanol (i.p., 1.0 g/kg) combination on AR latency in GlyRα1WT and GlyRα1S296A mice. l, Effects of 
THC (intra-4/5Cb., 5 μg/μl) and ethanol (i.p., 2.0 g/kg) combination on AR latency in GlyRα1WT and GlyRα1S296A mice. m, The AR latency of GlyRα1WT and 
GlyRα1S296A female mice receiving THC (i.p., 1.0 mg/kg) and ethanol (i.p., 0.5, 1.0 and 2.0 g/kg) combination. Values are represented as means ± s.e.m.,  
n per group. Exact P values are shown. Statistical differences were determined by a one-way ANOVA followed by Tukey’s post hoc multiple-comparison 
test (a-j) or a two-way ANOVA followed by Tukey’s post hoc multiple-comparison test (k-m).
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Extended Data Fig. 6 | Effects of ethanol on Cy7 level in HEK-293 cells and N2A cells measured by standard flow cytometry, Related to Fig. 6. a-d, 
Gating strategy to obtain HEK-293 cells with similar size (FSC-A) and granularity (SSC-A). The HEK-293 cells have been incubated with Cy7 (a), Cy7 + 
ethanol (b), THC-Cy7 (c) and THC-Cy7 + ethanol (d) for 60 min, respectively. Cy7 at 10 μM, THC-Cy7 at 10 μM and ethanol at 20 mM were used in this 
experiment. FSC-A: Forward Scatter Area; SSC-A: Side Scatter Area. e-h, Gating strategy to obtain N2A cells with similar size (FSC-A) and granularity 
(SSC-A). The N2A cells have been incubated with Cy7 (e), Cy7 + ethanol (f), THC-Cy7 (g) and THC-Cy7 + ethanol (h) for 60 min, respectively.  
i,j Histograms (i) and bar graph (j) of MFI (Median Fluorescence Intensity) obtained from standard flow cytometry analysis of HEK-293 cells treated with 
Cy7 or Cy7 plus ethanol in combination. k,l Histograms (k) and bar graph (l) of MFI obtained from standard flow cytometry analysis of N2A cells treated 
with Cy7 or Cy7 plus ethanol in combination. m, HPLC calibration curve of HEK-293 cell buffer spiked with known amounts of THC. The calibration curve: 
y = 2180.40x − 1662.02. n, HPLC calibration curve of N2A cell buffer spiked with known amounts of THC. The calibration curve: y = 2495.71x + 418.599. 
o,p Representative mass spectra of THC obtained from HEK-293 cell (o) and N2A cell (p) buffer. Values are represented as means ± s.e.m., n per group. 
Exact P values are shown. Statistical differences were determined by a a two-sided unpaired t-test (j and l) or a linear regression test (m and n).
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Extended Data Fig. 7 | Effects of ethanol on Cy7 level in HEK-293 cells and N2A cells measured by imaging flow cytometr, Related to Fig. 6. a, b 
Representative histogram used to discriminate between unfocused and focused images of HEK-293 cells (a) and N2A cells (b) incubated with Cy7, Cy7 + 
ethanol, THC-Cy7 and THC-Cy7 + ethanol. Cy7 at 10 μM, THC-Cy7 at 10 μM and ethanol at 20 mM were used. These experiments were done using the 
standard IDEAS® software platform. Upon this image, Gradient RMS values between 40–100 (R1: Region 1) were included for further analysis. Gradient 
RMS: Root Mean Square. c,d Representative graph of area versus aspect ratio used to gating focused images of HEK-293 cells (c) and N2A cells (d). Cells 
in the frame (R2: Region 2) were used for further membrane intensity analysis. Area: size of the focused cells; Aspect ratio: the minor axis divided by the 
major axis of the focused cells. e-g, Representative cell images (e), histograms (f) and bar graphs (g) of MFI obtained from IFC (Imaging Flow Cytometry) 
of HEK-293 cells treated with Cy7 or Cy7 and ethanol in combination. h-j, Representative cell images (h), histograms (i) and bar graphs (j) of MFI obtained 
from IFC of N2A cells treated with Cy7 or Cy7 and ethanol in combination. Values are represented as means ± s.e.m., n per group. Exact P values are 
shown. Statistical differences were determined by a two-sided unpaired t-test.
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Extended Data Fig. 8 | Effects of various doses of ethanol on plasma and brain intensity of THC and BBB permeability. Related to Fig. 7. a, Whole body 
fluorescence imaging of mice treated with Cy7/Cy7-THC (i.p., 10 mg/kg) or Cy7/Cy7-THC (i.p., 10 mg/kg) and ethanol (i.p., 0.5 g/kg) in combination.  
b, Representative fluorescence images of mice treated with Cy7 alone or Cy7 with ethanol in combination. c, Brain fluorescence intensity of Cy7. n = 5 mice 
per group. d, Representative fluorescence images of mice treated with THC-Cy7 or THC-Cy7 with ethanol in combination. e, Brain fluorescence intensity 
of THC-Cy7. n = 5 mice per group. f, Schematic illustration of the in vitro BBB model. g, Relative level of FITC-Dextran (1.0 mg/ml, 1 h) crossing endothelial 
monolayer with or without ethanol (20 mM, 5 min) treatment. h,i, Representative images (h) and quantitative analysis (i) of FITC signal in the brain of 
mice treated with FITC-Dextran (i.p., 50 mg/kg, 1 h) with or without ethanol (i.p., 0.5 g/kg, 5 min) administration. Scale bars: 1 mm. j, Calibration curve of 
plasma spiked with known amounts of THC. The calibration curve: y = 889.307x – 1295.26. k, Representative mass spectra of THC obtained from plasma 
of C57BL/6 J mice administrated with THC (i.p., 10 mg/kg). l,m Quantitative analysis of plasma (l) and cerebellar (m) THC intensity in mice treated with 
THC or THC and ethanol in combination. n = 3 mice per group. Values are represented as means ± s.e.m., n per group. Exact P values are shown. Statistical 
differences were determined by a two-sided unpaired t-test (g and i) or a two-way ANOVA followed by Tukey’s post hoc multiple-comparison test  
(c, e, l and m) or a linear regression test (j).
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Extended Data Fig. 9 | Effects of DDT on acute and chronic ethanol exposure associated SETEM and ethanol-induced motor incoordination, Related 
to Fig. 8. a, Schematic illustration of synthesis of di-desoxy-THC (DDT). b, AR latency of mice receiving THC (i.p., 1.0 mg/kg), ethanol (i.p., 1.0 and 
2.0 g/kg), DDT (i.p., 30 mg/kg), or their combination. c, Effects of DDT (i.p., 30 mg/kg) on motor incoordination caused by various doses of ethanol. 
d, Schematic illustration of the CEE. e, The effects of THC and DDT on the CEE-induced motor incoordination. f, The effects of THC and AM251 on the 
CEE-induced motor incoordination. g, Representative images showing a mouse walking on treadmill and its paw prints detected from a video underneath 
the treadmill. LF: left forelimb; RF: right forelimb; LH: left hindlimb; RH: right hindlimb. h-j, Effects of DDT (i.p., 30 mg/kg, 20 min before tests) on the stride 
length (h), stride duration (i) and stance width (j) of mice in the gait test. k-m, Effects of DDT (i.p., 30 mg/kg) on grip strength (k), body temperature (l) 
and food intake (m) of mice in the grip test. Values are represented as means ± s.e.m., n per group. Exact P values are shown. Statistical differences were 
determined by a one-way ANOVA followed by Tukey’s post hoc multiple-comparison test (b, c, e and f) or a two-way ANOVA followed by Tukey’s post 
hoc multiple-comparison test (h-j) or a two-sided unpaired t-tests (k–m).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The patch-clamp recording  results were collected by Axon 200B and 700B. The ELISA results were collected by Varioskan LUX multi-mode 
microplate reader (ThermoFisher Scientific, Waltham, MA). The rotarod test results were collected by rotarod system (XR1514, Xinruan, 
Shanghai, China). The elevated plus maze test results were collected by Elevated Plus Maze (EPM) apparatus (40142, Ugo basile). The startle 
reflex test results were collected by Med Associates Startle Reflex System (Med Associates Inc.). The immunohistochemistry results were 
collected by IX73 Inverted microscopes (Olympus) and Zeiss LSM880 confocal fluorescence microscope (Zeiss, USA, San Diego, CA). The 
Standard flow cytometry results were collected by BD FACSDiva Version 6 Software system (BD Biosciences). The Imaging flow cytometry was 
collected  by the IDEAS®6.2 software. The Live animal imaging were collected by Living Image 2.5 software (PerkinElmer). The HPLC-MS results 
were collected by Shimadzu LC-20AD series system. The gait was collected with DigiGait® Version 16 software.

Data analysis The patch-clamp recording data were analyzed by pClamp 10.4 software and GraphPad Prism 8.0. The ELISA results were analyzed by 
GraphPad Prism 8.0. The immunohistochemistry data were analyzed by Image J software (National Institutes of Health, NIH. https://
imagej.nih.gov/ij/). All behavioral results were analyzed by video tracking software (Version 6.0; ANY MAZE) and GraphPad Prism 8. The 
Standard flow cytometry results were analyzed by FlowJo v10 software and IDEAS® software . The Live animal imaging were analyzed by 
GraphPad Prism 8. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

 Source data are provided with this paper.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. The sample sizes were selected based on our prior studies that confirm to the 
standard in the field and assure statistically meaningful differences and repeatability of the results (Zou et al.,Cell reports 2020; Zhu et al., 
Nature methods 2021; Zhu et al., Cell 2018)

Data exclusions No data was excluded from the analysis.

Replication All data collected in this project are presented in this paper including any replication.

Randomization The samples and mice were randomly allocated to different conditions.

Blinding For transgenic mice experiments, the investigators were not blinded to group allocation because investigators needed to perform patch-
clamp recording and behavioral test. For other experiments including HPLC-MS and flow cytometry , investigators were blinded to group 
allocation during sample collection and data analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Rabbit anti-c-Fos (Abcam, ab209794); Goat anti-rabbit IgG ( Vector Laboratories, PK-6101); anti-cAMP antibody (Direct cAMP ELISA 

Kit (Abcam #ab133051))

Validation All antibodies used in this study are commercially available and have been validated by the manufacture as follows: 
 
Rabbit anti-c-Fos (Abcam, ab209794); 
https://www.abcam.com/c-fos-antibody-ab209794.html 
 
Goat anti-rabbit IgG ( Vector Laboratories, PK-6101) 
https://www.biocompare.com/25138-Assay-Kit/10540910-VECTASTAIN-174-Elite-ABC-Peroxidase-Kit/ 
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Cyclic AMP Complete Antibody (Direct cAMP ELISA Kit (Abcam #ab133051)) 
https://www.abcam.com/ps/products/133/ab133051/documents/ab133051%20-%20Cyclic%20AMP%20Complete%20ELSIA%20Kit%
20v3%20(website).pdf 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK-293 cells (ATCC); N2A cells (ATCC); bEnd.3 cells (ATCC);

Authentication All the cell lines were authenticated by qPCR.

Mycoplasma contamination All the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Wild-type C57BL/6J (male and female, 8 weeks old)  and male BALB/c Nude mice (8 weeks old) were obtained from Vital River 
Laboratory Animal Technology Co., Ltd. (Beijing, China).  The male GlyRα1S296A mice (8 weeks old) were obtained from Li Zhang 
(National Institute on Alcohol Abused and Alcoholism, NIH). All mice were bred and housed under a specific-pathogen-free conditions 
with 12-h dark/light cycle under 21± 1 °C temperature and 55–60% humidity and provided ad libitum access to water and food.

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All animal procedures were approved by and performed in accordance with the guidelines of the Institutional Animal Use and Care 
Committee of University of Science & Technology of China.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation HEK-293 and N2A cells were pre-incubated by THC-Cy7.

Instrument BD FACSDiva Version 6 Software system (BD Biosciences) for Standard flow cytometry;  ImageStream Mark II Imaging Flow 
Cytometry (Amnis, Merck Millipore) for imaging flow cytometry.

Software FlowJo v10 software for Standard flow cytometry; INSOIRETM software for imaging flow cytometry.

Cell population abundance  At least 5000 events were recorded for each sample during Flow Cytometry analysis.

Gating strategy For Standard flow cytometry, cells were gated based on FSC-A versus SSC-A parameters and these samples were chosen for 
fluorescence-activated cell sorting;  For imaging flow cytometry, cell debris were gated out and the focused single cells are 
identified using the IDEAS®6.2 software. Gradient RMS (Root Mean Square) was firstly used to find the focused cells. The 
Gradient RMS is useful for the selection of focused images by measuring large changes of pixel values in the image and is 
computed using the average gradient of a pixel normalized for variations in intensity levels. Cells with Gradient RMS value 
between 40-100 were included for further analysis. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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