ZOO332H1S - Lecture 4 Insect Nervous System and Escape Behaviour in the Cockroach

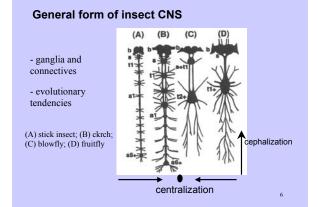
(AJE 2003)

Periplaneta americana (L.) - also known as the American cockroach

- SEM Cockroach eye
- SEM Cockroach antenna
- SEM Cockroach tarsus
- SEM Leg sensory structures/climbing

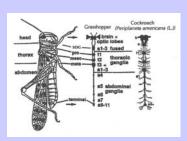
Cockroach Eye

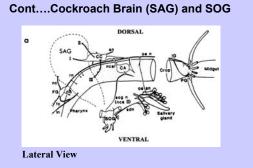
- Base of antenna
- Ocellus

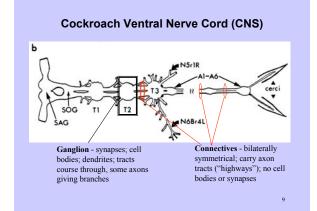

Antennal segments

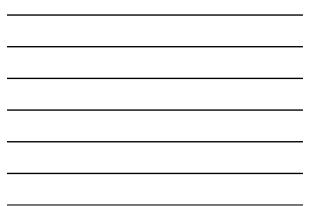
Leg - Tarsus and sensory spine(s)

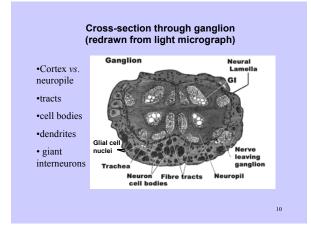
Cont...General form of insect CNS


Grasshopper and cockroach

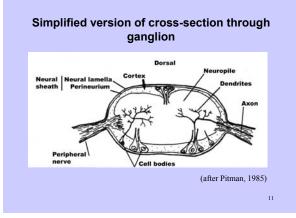

• large thoracic ganglia

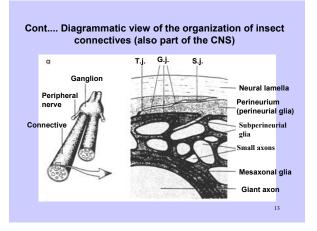

• fusion of "T3"


nerve branches


• brain (SAG)



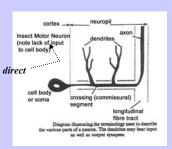


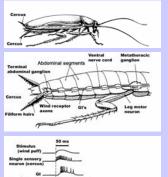

Organization of Insect CNS -Light micrograph of cross-section through connectives

•Symmetry

•axon types •connective

tissue •missing GI2 (left side) why?

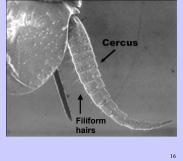



Single insect motor neuron

 basic structure
 complexity of dendritic arbor (later slides)

14

Cockroach wind receptors, escape circuitry, and behavioural response

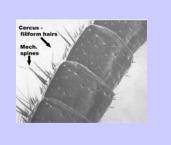


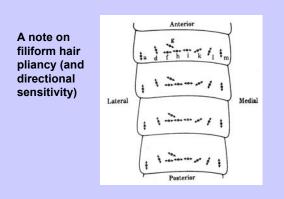
Leg motor neuron

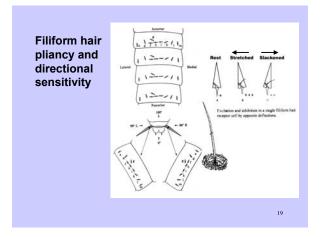
SEM of cercus (low mag)

• cerci extend from terminal abdominal segment

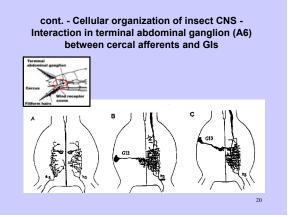
• filiform hairs

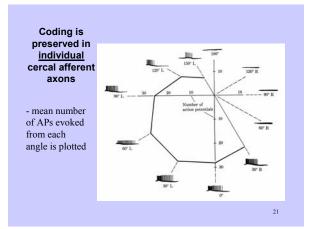


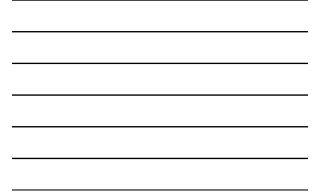

SEM of cercus (high mag)

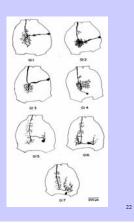

•Filiform hairs • *ca*. 220 per cercus

•sensory neuron in base


•other receptor structures







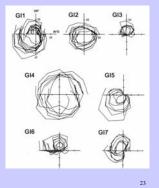
GIs in A6

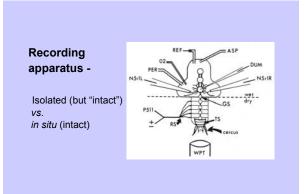
• moving in afferent direction

• next neuron level in the pathway

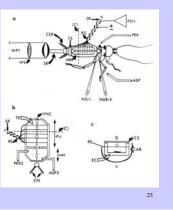
• cell bodies located contralateral to axon (note that figure is distorted laterally)

Coding is preserved in Giant Interneurons

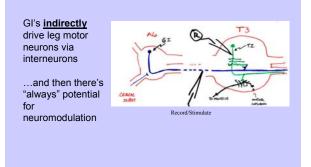

 cercal afferents drive GI's


• GI's are bilaterally

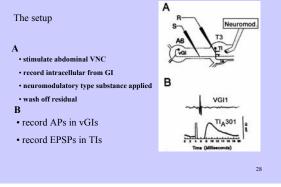
symmetrical • 7 on each side

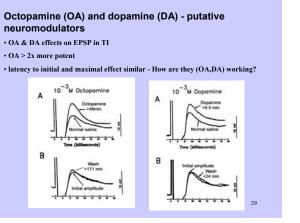

position constant
 amongst animals

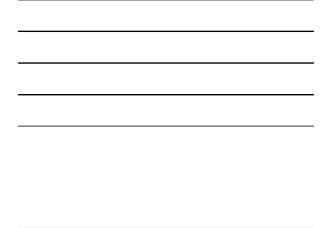
• intracellular recording from each while stimulate filiform hairs



Recording *in situ* from AVNC and motor neurons (don't (!) memorize)

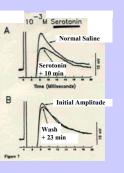



Modulation of circuitry in the CNS


Come back to later in the term...for now...

Some of the data supporting modulation of input to thoracic motor neurons

Modulation of motor neuron circuitry in cockroach T3



Further data supporting neuromodulation serotonin

Cont...modulation of thoracic interneurons with input to motor neurons

Some Summary Points:

- Octopamine 100% increase in amplitude of EPSP
 Oct more than 2x as efficacious as dopamine (35% increase in ampl)
- Oct, DA > 10-15 min delay
- prolonged action wash-out slow
 2nd messenger (and access to circuit "restricted")
- degradation
- alone, no response on interneurons (no depolarization or EPSP)
- serotonin decrease in efficacy of input to TIs when superfused
 rapid response of serotonin (30s to 2 min)

31

Modulation makes sense

Inappropriate escape response - severe consequences (especially for gregarious animals)

1. Supported by previous studies - no inappropriate escape when walking; don't escape when touch in colony

2. Aggregation pheromone -

· detected by antenna ----interneurons synapse with escape circuitry •cover antenna ---inappropriate escape

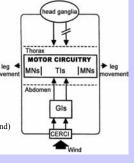
3. Descending pathway from head

4. Environmental influence = NB,

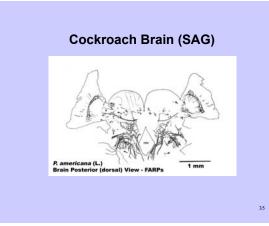
- brain to lower levels of the CNS 5. Is there a **tonic influence** from the brain?

32

Modulatory inputs from the brain


• exp'al setup - cut right side of connective just caudal to brain

• animals appear "normal"


· BUT - normal response to wind

- from front left ?
- in 62% of cases, left wind, left turn!
- right front wind, left turn (away from wind)

• other sensory modalities (*eg.*, leg tactile spine) OK in behaviour evoked

Summary of Neuromodulation and inputs in T3

