Simple Forms of Implicit Learning Lead to Changes
in the Effectiveness of Synaptic Transmission
Habituation Involves Depression of Synaptic
Transmission
Sensitization Involves Enhancement of Synaptic
Transmission
Long-Term Memory Requires the Synthesis of
New Proteins and the Growth of New Synaptic
Connections
Classical Conditioning Involves an Associative
Enhancement of Presynaptic Facilitation That Is
Dependent on Activity
Storage of Explicit Memory in Mammals Involves
Long-Term Potentiation in the Hippocampus
Long-Term Potentiation in the CA1 Region Is
Associative
Associative Long-Term Potentiation May Be
Important for Spatial Memory
Long-Term Potentiation in the CA3 Region Is
Nonassociative
Is There a Molecular Alphabet for Learning?
The Somatotopic Map in the Brain Is Modifiable by
Experience
Changes in the Somatotopic Map Produced by
Learning May Contribute to the Biological Expression
of Individuality
Common Cellular Mechanisms May Be Responsible
for Changes in the Somatotopic Map
Neuronal Changes Associated with Learning Provide
Insights into Psychiatric Disorders
tribute to individuality through differences in life
experience.

 ness. In this chapter we first examine the cellular -әлеме snopssuos әu!nbar op sunol t!̣! reflexive and do not require conscious attention, Implicit forms of learning are covert and often sunof solpur oml tseal te sey finq ssaroid risuls In the last chapter we saw that learning is not a ders, it presumably does so because treatment teach-
es the patient to acquire new patterns of behavior. chotherapy is successful in treating behavioral disorsometimes be unlearned. Thus, insofar as psyical disorders. Fortunately, what is learned can and these can, in the extreme, constitute psychologlanguage. We also learn dysfunctional behaviors are maintained over generations because we learn nicate experiences and thereby create cultures that we have seen in Chapter 33, we are able to commuto learn from experience. Indeed, we are who we are
largely because of what we learn and remember. As Many aspects of behavior result from the ability which learning alters the structure and function of
nerve cells and their connections. final chapter we focus on the mechanisms by

 teristic disturbances of behavior. All functions of malfunctions of the brain are expressed in characΓ all behavior is a function of the brain and that

Kindly extracted from Kandel, Schwartz, and Jessel: Essentials of Neural Science and Behavior (1995)
 sory neurons results from a decrease in the amount

 strongly, leading to a strong reflex withdrawal of
the gill. If the stimulus is repeatedly presented, the

 terneurons and motor cells (Figure 36-1). These

 'pauo!!!puoว ќโ!eว!sseןว pue paz!!!suas aq osje ueว səsuodsə1 วsวपt 1วч६ əวs

 both the siphon and gill; a tactile stimulus to the lus delivered to the siphon elicits withdrawal of
 water and waste (Figure 36-1). These reflexes are small fleshy spout above the gill used to expel seatral nerve cells. Aplysia has a repertory of defensive nervous system containing only about 20,000 cenmarine snail Aplysia californica, which has a simple
 response could be examined in a series of monosystill simpler systems in which the behavioral mechanisms of habituation in the flexion reflex.
As a result, investigation of habituation required proved difficult to analyze further the cellular spinal cord of vertebrates is quite complex, it
 suornəu $10 \neq \amalg$ әчд pue suom

> Synaptic Transmission

 u!̣́́pnis 10f ןəpou poos e s!̣ saxว[jว1 [eu!̣ds fo toun
 tion of the spinal flexion reflex in the cat and ent!qеч иวәмұวq sprןeıed วsop punof pue sұuәu

 had been repeatedly activated.

 -วas Kuew satue parnaas Kןuo pue uo!̣eןnu!̣s po
 withdrawal of the limb in response to a tactile that certain reflex forms of behavior, such as the ing posture and locomotion, Sherrington observed Ivan Pavlov and Charles Sherrington. While study-
 This learned suppression of response is habituation. the stimulus through repeated encounters with it. ful, the animal learns to suppress its response to es. If the stimulus is neither rewarding nor harm to a new stimulus with a series of orienting reflex that stimulus is repeated. An animal first responds properties of a novel stimulus that is harmless, as tive form in which an animal learns about the plest form of implicit learning. It is a nonassocia

 tiveness of specific synaptic connections. these modifications involve changes in the effec as the eye-blink response (see Chapter 35). Most of analyzed in the nervous system of invertebrates

 it forms of learning and memory has come from Most of the progress in the cellular study of implic-
it forms of learning and memory has come from
pue suoinəu Kıosuəs әчt иәәмұәq suoṇวәииоว э!

well as between certain interneurons and the motor cells. ulation of the siphon leads to a depression of synaptic
transmission between the sensory and motor neurons as of each type of neuron is illustrated here.) Repeated stim-
ulation of the siphon leads to a depression of synaptic ynapse on the motor neurons. (For simplicity, only one

 the siphon skin. These sensory cells use glutamate as habituation. In this circuit about 24 sensory neurons
(mechanoreceptors) in the abdominal ganglion innervat

 fleshy spout called the siphon.

 investigated in the animal's gill-withdrawal reflex. level. The cellular mechanisms of habituation have been vous system that makes it an ideal animal model for
studying the neural mediation of reflexes at the cellular Figure 36-1 The marine snail Aplysia has a simple ner-
time after long-term habituation training. B. The mean percentage of physiologically detectable
connections in habituated animals at several points in week after training. potential in the motor neuron is still undetectable one term habituation. In the habituated animal the synaptic

 between the sensory and motor neurons. (Adapted from

se [ПวM se suom

-ұdepe pue o!̣seןd aie misíd \forall u! sasdeuর́s I[ए 10 N

 motor neuron, in long-term habituated animals cally detectable connections onto an identified -18oןo!sSy
 ing minutes; four such training sessions spaced
over time lead to a long-term memory lasting up to
 weeks, or years? In Aplysia a single training session long-term memory for habituation lasting days, synapse change and how long can the change last?
Can changes in synaptic effectiveness give rise to function? How much can the effectiveness of a
synapse change and how long can the change last? What are the limits of this plasticity in neuronal than storing information. be stored in nerve cells that have a function other likely that in the human brain, too, memory can

 forms of learning does not depend on specialized have shown that memory storage for implicit brates. In each of the instances cellular analyses cockroaches and in the startle reflexes in vertehabituation of escape responses in crayfish and
 sensory neurons or interneurons, or both, seems to
be a fairly common mechanism of habituation. Synaptic depression of the connections made by short-term memory process for habituation.

иопие -oId əұeıs AMP activates the cAMP-dependent protein kinase tration of cAMP in the sensory neurons. Cyclic enzyme adenylyl cyclase and increases the concena GTP-binding protein $\left(\mathrm{G}_{\mathrm{s}}\right)$, which activates the facilitating neurons) activate receptors that engage (and the other neurotransmitters released by the and biochemical studies (Figure 36-3B). Serotonin pieced together on the basis of pharmacologica tion of this monosynaptic pathway has been
 senger cAMP in the sensory neurons. rons by increasing the amount of the second mes--nau Kiosuas ayt moy aseəja dəझ!̣usuen әәuequa itating neurons, some of which are serotonergic
 ios aчt jo sasdeuî's [euoxe-oxe 8u!̣pnpu! 'suoməu interneurons that form synapses on the sensory tion: the sensitizing stimulus activates a group of trast, sensitization involves heterosynaptic facilitatained activity in the stimulated pathway. In condecrease in synaptic strength resulting from sus Habituation leads to a homosynaptic depression, a habituation or enhanced by sensitization. ferent forms of learning: they can be depressed by tic connections can participate in at least two difthose of the sensory neurons on the motor neu those of the sensory neurons on the motor neusynaptic connections in the neural circuit of the stimulus to the head or tail, a number of different
 Short-term sensitization has been examined at
 -Hoys e yłoq sey uo!̣ez!!!suas 'uoṇem!̣qey әу! form of nonassociative learning than habituation.
 s!̣ч.L әdeวsa pue ןемедрч

Synaptic Transmission
 Sensitization Involves Enhancement of

 in synaptic strength. withdrawal reflex, a relatively small amount oftraining can produce large and enduring changes

 both the long-term and short-term processes the ry and motor neurons (Figure 36-4). Second, in the same locus: the connections between the sensotion. First, both short and long-term sensitization
are associated with changes in synaptic strength at process. Several findings point to this interpreta-
 ilar ones in vertebrates suggest that short-term and

 'səュnu!̣u Ќuo Bu!̣se| uonezn!suas unวt-p10ys of

 Growth of New Synaptic Connections аи। puv suiplo..d man fo sisampuís
 (Figure 36-3B)

 dependent protein kinase works in parallel with
 mobilization of transmitter vesicles through a caldoes not directly affect release but increases the kinase alters an L-type Ca^{2+} channel, whose influx

 type Ca^{2+} channels to be activated for longer peri-

 sววuวnb

 can lead to an increase or decrease in the activity

 level of CAMP has returned to its basal level. As a kinase to be persistently active, even though the the regulatory subunits (Figure 36-5). In turn, this
decrease in the regulatory subunits causes the
 memory encodes a protein that is an enzyme in Indeed, one of the genes induced in long-term

 term training, the amount of the regulatory sub-

 -кioydsoyd ol suoməu Kıosuas ачт jo snəpnu әч7 the cAMP-dependent protein kinase translocates to
 teins? Molecular studies indicate that with repeatWhat is the function of these genes and proteins not directly involved in short-term facilita
tion are required for long-term facilitation. and motor neurons, suggests that genes and prothe faciliation at the synapse between the sensory macromolecular synthesis, which is also evident in which selectively block long-term memory without
affecting short-term memory. This dependency on using inhibitors of protein or mRNA synthesis, processes can be obtained in experimental animals clearer behavioral separation between memory seizure and head trauma can selectively affect
short- or long-term memory in humans. An even However, certain clinical conditions such as
seizure and head trauma can selectively affect second messenger involved in the short-term
process, also turns on the long-term change.
 674 Section IX. LANGUAGE, LEARNNG, AND MEMOR
duces long-term facilitation after four or five
 2 . The second set of proteins $(\boldsymbol{\Delta})$ is important for the
growth of active zones and the development of new pue i síemqued jo sulaıoıd วృensqns әut jo uoņejíoud

 tein family of cyclic AMP response c lement-binding ed in the upstream region of CAMP-inducible genes.
transcriptional activators, thought to belong to the prothat bind to cyclic AMP regulatory elements (CRE) locat-
 tive mechanism is initiated by the protein kinase A,
 memory. retention or storage of a component of the short-term involved in transmitter availability and release (pathway closing of K^{+}channels (pathway 2) as well as steps kinase A, which phosphorylates and covalently modifies second messenger cAMP. In turn, cAMP activates protein fier, the enzyme adenylyl cyclase, to convert ATP to the
 of doladaวar aueıquausuen e no sұo uḷuonoras ' $(2$ pue I Short-term facilitation (lasting minutes to hours) involves

processes.

 neuron to initiate both the short-term facilitation and

 Figure 36-5 Schematic outline of the two major sets of
changes in the sensory neurons of the gill-withdrawal

the dendrites of the motor neurons grew to accom- active zones is reduced from 40% to 10%. trained animals. Finally, in the sensitized animal !! \% 99 of sएeu!̣ue pau!̣enun u! speu!̣uiat ọ̣

 reflex by examining the synaptic terminals with
the electron microscope. The sensory neurons in and motor cells involved in the gill-withdrawal
reflex by examining the synaptic terminals with tions. This change was delineated in the sensory (Figure 36-6) and the proportion of terminals with
 səənpar suornəu rołou pue Kıosuəs иәәмұәq suoṇ

 modate the additional synaptic input. Such mor-
phological changes seem to be characteristic only
A. This histogram compares the number of presynaptic
of sensory neurons. (Adapted from Bailey and Chen,
1983.)

long-term sensitization to an increase. est in the sensitized animals.
B. Long-term habituation lead terminals in control animals with those in long-term
habituated and sensitized animals. The number is high-
est int terminals in control animals with those in long-term

щ!!s pəuon!ipuoə әчд јо suom

 [enp!u!pu! uo !̣num! pauon!puosun pue pauon poral specificity is the convergence of the condiof Aplysia, one important mechanism for the tem-

 within a critical interval of about 0.5 second. What unconditioned stimulus, and often it must do so work, the conditioned stimulus must precede the to associative learning. For classical conditioning

 body (either the siphon or the mantle shelf) with
an unconditioned stimulus (a strong shock to the pairing a stimulus to the appropriate area of the pathway can be conditioned independently by ulations of sensory neurons. Thus, each neural these areas is separately innervated by distinct popnearby structure called the mantle shelf. Each of ed by stimulating, respectively, the siphon and a as well as sensitization. These reflexes can be elicitAplysia can be enhanced by classical conditioning The siphon- and gill-withdrawal reflexes of tioning is an elaboration of the mechanism for
sensitization.
 longer than sensitization. As we shall see, the cellu-

 Bu!̣uo!!!puos [eכỊssep pue uo!̣ez!!!suas чłoq íq tioned stimulus. For reflexes that can be modified been paired or associated with a strong uncondian initially weak or ineffective stimulus becomes
highly effective in producing a response after it has another (see Chapter 35). In classical conditioning
an initially weak or ineffective stimulus becomes learns to associate one type of stimulus with about the properties of one stimulus, the subject Classical conditioning is a more complex form of
learning than sensitization. Rather than learning Dependent on Activity Presynaptic Facilitation That Is Classical Conditioning Involves an
Associative Enhancement of
ly, blocking the action of the CREB transcription

 high levels of cAMP that are thought to be out of
the range of normal modulation. The rutabaga degrades cAMP. As a result, this fly has abnormally
high levels of cAMP that are thought to be out of lacks a phosphodiesterase, an enzyme that a defect in the cAMP cascade. The dunce mutant

 amnesiac, have been studied in detail and show these mutants, called dunce, rutabaga, and classically conditioned, and single-gene mutants
deficient in learning have been isolated. Three of әq ueว v!!
 and generates more cAMP when it is bound to cyclase in the brain is sensitive to $\mathrm{Ca}^{2+} /$ calmodulin latory transmitters (Figure 36-8). Much of the the adenylyl cyclase by serotonin and other modulowing an action potential is thought to act
through calmodulin to amplify the activation of tion achieved? The Ca^{2+} that flows into the cell folHow is activity-dependent presynaptic facilitasimilar enhancement of sensory neurons occurs in
the tail of Aplysia.

 'snן̣u!!̣s pauon!puoวun әчł smollof suoanəu Kios
 contrast, no enhancement of facilitation occurs if

 of วsuodsə ய! ว!! of u!i̊aq suornəu Kiosuวs วч7
 uli are timed so that the interneurons are activated behavioral sensitization. However, if the two stimulus. This gives rise to presynaptic facilitation and

(US) is presented. (5-HT, serotonin.)
not active prior to presentation of the CS, so its Ca^{2+} yl cyclase. that enhances the activity of calcium-dependent adenyl

CS- Pathway (no preceding activity)

B
CS^{+}Pathway (preceding activity)
\forall
ity)

 inpaired neuron ry neuron is considerably greater than that due to the osuas pal!ed әчt ot วnp [enuวృod ondeunsisod Aioje]pxa the two sensory neurons were made before training (Pre)
and one hour after training (Post). After training the Ḱq uoinəu ioıou pə!!
 par!ed tou S! (-SO) uoinau Kiosuas uoudis aب7 jo uone|
 conditioning. Two sensory neurons are each stimulated B. The activity of individual cells is modified by classical

without paired activity.

 \square

ed from Nicoll et al., 1988.) collaterals. The resulting LTP lasts several hours. (Adapt trains of stimuli for 1 second each at 100 Hz tetani and

 naptic CA1 region of the hippocampus is shown in this plot of CA1 region of the hippocampus is shown in this plot of in CA1 by means of the Schaffer collaterals (3).

∞

 Why is the simultaneous firing of the pre- and
postsynaptic cells important for LTP? The Schaffer tions during the late stages of development. involved in the fine tuning of synaptic connec-
tions during the late stages of development.
 one of the cells firing B is increased." As we have place in one or both cells so that A's efficiency as some growth process or metabolic change takes Hebb: "When an axon of cell A . . . excites cell B
and repeatedly or persistently takes part in firing it,

 the postsynaptic and presynaptic neurons. This $470 q$ u! Bu!!! snoəuełfnuịs sə!!nbai d.LT 'snपL

 the Schaffer axon collateral pathway, which conthe Schaffer axon collateral pathway, which con-
nects the pyramidal cells of the CA3 region of the $36-9 A$). To produce LTP it is necessary to use a 36-9A). To produce LTP it is necessary to use a
strong stimulus that activates several afferent fibers

 ation with the strong one. Finally, LPP is specific to
those synapses that are activated by the stimulus. For example, LTP produced by an input to the api-
cal dendrites does not affect an independent input
 the CA1 region are illustrated in Figure 36-10.
What accounts for these three features? W

5

 $v=m^{n}$ dntthe potential before and after tetanus). A. Tetanic stimulation of the weak input alone does not
cause long-term potentiation in the pathway (compare
 weak and strong synaptic inputs from two different fasci
cles of the Schaffer collateral pathway. (Adapted from
 the hippocampus shows cooperativity, associativity, and
specificity. In the figure a single pyramidal cell receives Figure 36-10 Long-term potentiation in area CA1 of
the hippocampus shows cooperativity, associativity, and

the weak.

long-term potentiation in the strong pathway but not in

새깨엉 0

 Sodium and K^{+}flow through the non-NMDA
receptor-channels but not through the NMDA acts on both the NMDA and non-NMDA (Q / K) receptors
Sodium and K^{+}flow through the non-NMDA
 uoịssịusuen गndeuís Kouənbəy-MoI feumou Bu!̣nd 'V 1988.) wợs8iM pue uossjeasng woy pardepy) 'sau!ds ot

 - Figure 36-11 A model for the induction of long-term
potentiation. According to this model N-methyl-D-aspar-
tate (NMDA) and non-NMDA (quisqualate/kainate) simply depolarizing the postsynaptic cell.

 through the activation of many non-NMDA recep-
 to the receptor and the membrane is depolarized. becomes functional only when glutamate binds
 Thus, the NMDA receptor-channel is unusual the cell. The influx of Ca^{2+} is the signal for the
induction of LTP. particularly Ca^{2+} to flow through the channel into pop out of the channel mouth, allowing Na^{+}and larization causes the positively charged Mg^{2+} ion to

aptic event (increase in transmitter release), a mes-

 cell that was depolarized.

 however, involves in addition an increase in presyn-
 depends on postsynaptic depolarization, Ca^{2+}

 restrains the diffusion of Ca^{2+}, so that the synaptic
action is restricted to the synapses that are active. spine acts as a functional compartment that

 Receptors for NMDA seem to be clustered on the
heads of the spines of dendrites, not on the shafts channel blocks LTP. Ca^{2+} channels. Blocking the NMDA receptor-

 injecting Ca^{2+} into the postsynaptic cell initiates
the early phase of LTP. In principle, Ca^{2+} could pass
 Calcium influx through the unblocked NMDA
receptor-channel is critical for LTP. Blocking Ca^{2+}
ondeuর́səd s! d.LT teчt uoụeэ!̣pu!

 (.066I 'uว!s.L pue

Percent failures

-eds asn isnu pue ןood aцt punore suoņeวol wop
 p!̣ uione!d e puy of p!n! anbedo ys!̣!!M e प!!M
 the analysis of a spatial memory task in which a rat memory storage? Evidence for this has come from storage, raises the question: Is LTP involved in pus, a region known to be important for memory brain, including the cerebral cortex and hippocamto sease रueu u! sampo dLl tect su!puy aut Associative Long-Term Potentiation May Be
Important for Spatial Memory
 nearby presynaptic fibers in addition to those that

 tions, as in Aplysia. from a facilitatory interneuron with diffuse projec-
 substance is released from the postsynaptic target facilitation found in Aplysia in that the facilitatory

 in series: a Hebbian mechanism and activity According to this view, LTP in the CA1 region of
the hippocampus uses two associative mechanisms jointly with other molecules, for the retrograde carbon monoxide, have properties that have made diffuse readily from cell to cell, nitric oxide and
carbon monoxide, have properties that have made

 more retrograde messengers from the dendritic Ca^{2+} acting directly, causes the release of one or
 sage must be sent from the postsynaptic to the
presynaptic neurons. There is now evidence that

 various intracellular second-messenger pathways in
 cells. Indeed, LTP can be obtained after washing

 uo purdap ңou op pue föd
 pocampus and in many regions of the cerebral corAlthough LTP occurs at several synapses in the hip[セ!̣eds syวo|q ospe pue dLT sววnpa1 (uy) วseu!y əu!s

 -8u!̣uer ןe!peds u! pəлןоиu! s! 'dLI sdeyiəd 'snd

 When NMDA receptors in the hippocampus are can navigate to the platform by means of direct
sight rather than spatial cues.
 platform is raised above the water surface or
 which the pool is located-to find the platform. In
memory storage.
 use dirms of learning seem to share a
 implicit learning in Aplysia and Drosophilia. Thus,

 ry in requiring gene expression and new protein

 plex forms. Of course, these elementary cellular
 alphabet for synaptic plasticity-simpler forms of
 - e!posseuou of səวuęsui u!̣eura u! pąepar aIe snd synaptic plasticity in Aplysia and in the hippocam-

Second, the finding that the associative forms of

 receptor, which are capable of responding to two teins, such as the adenylyl cyclase and the NMDA seem to derive from the properties of specific proand associative LTP - the plastic properties of cells dependent enhancement of presynaptic facilitation instances we have considered here-activityrepresents a basic cellular process. In the two

 to learning. tionist possibilities in a neurobiological approach - onpaı 8u!̣s!̣dins asaut as!̣e. 8u!̣uea fo swiof 4 ! The changes in synaptic efficacy that we have
encountered in studies of both implicit and explic-

\section*{| ω |
| :--- |
| i |
| 4 |}

