ZOO332H1S Lecture 3,4 Jan. - 2003 (AJE)

Channels, resting and action potentials

Reasons for studying channels 1:

- Fascinating stuff in Zoology adaptation to environmental stress
- "...there is a constant struggle...between the instinct of the one to escape its enemy and the other to secure its prey." – Charles Darwin
- Skin of newt (*Taricha*) contains TTX, these newts are generally avoided by snakes since they are toxic
- Thamnophilis sirtalis can eat these newts why?
- Why do nociceptive fibres in DRG of rat express TTX-resistant sodium channel Na,1.9 (NaN)?

Geffeney et al.(2002); Fang et al.(2002)

- How do species of channels differ?
- An all-or-none event? (popcorn)

Driving force on ions in solution

From previous example – why is K⁺ going across the membrane?

- 1. Intermittent permeability through channel
 - Open channel >> permeability
 - Permeability + ions >> conductance
- 2. Equal concentrations of K⁺ both sides (no chemical gradient)
- 3. Provided electrical gradient (+20 mV, -20mV)

The Nernst EquationWhich
simplifies to: $E_{ion} = \frac{RT}{zF} \ln \frac{[ion]out}{[ion]in}$ $h > \log \text{ conversion x 2.31}$
R = gas constant
<math>T = temperature in "Kelvin $E_{ion} = 58 \log \frac{[ion]out}{[ion]in}$

What is V_{driving force} for an ion?

- It's not V_m!
- It depends on how far away V_m is from the equilibrium potential for the ion, E_{ion}
- $\blacksquare V_{df} = V_m E_{ion}$
- The equilibrium potential for a particular ion is given by the Nernst equation (electrical and chemical considerations)

Current for an ion is zero at the equilibrium potential (also known as the reversal potential)

- E.g., E_{K+} is typically -80 mV, so I_{K+} at this value for V_m is zero, whatever the membrane conductance
- # E_{Na^+} is about +50 mV, so Na⁺ is **not** at equilibrium at -80 mV . . .
- \blacksquare . . . and I_{Na^+} will depend on $(V_m E_{Na^+})$
- \blacksquare and on g_{Na^+}

About the Nernst equation

- Refers to a single ion at 20° C (but...)
- Is voltage when that ion is in thermo-dynamic equilibrium (electrical and chemical forces balance)
- Each ion may have a different E_i
- Hembrane voltage may not equal any value of E_i

What about actual V_m?

- Would equal E_{K+} if membrane only permeable to K⁺, e.g. glial cells (and muscle cells (excitable)) come close
- # If membrane permeable to other ions which are *not* at their equilibrium potential, then they will cross membrane and change V_m
- So V_m will be compromise between values of E_i
- # At E_i, diffusive flux and currents are equal and opposite because concentration gradient balances electrical gradient

Role of Active Transport of Na⁺ and K⁺

- Perpetual task of extruding Na⁺ and intake of K⁺
- · Essential to maintain viability of nerve cells
- \bullet Hydrolysis of ATP pump action coupled: 3 Na^+ out for 2 K^+ in
- \bullet Specificity: requires Na+ inside; not as specific for K+ outside (other X+ can substitute)

....Cont. Active transport

Evidence that membrane potential change due to action of the Na $^{+}/K^{+}$ pump:

1. Input resistance did not decrease (expected if hyperpol'n was due to an increase in gK^{\ast} or gCl^{\ast})

2. Effect of ouabain reduced or eliminated hyperpol'n

3. Replacement of external K^{\ast} eliminated effect of Na^{\ast} injection (until K was replaced in bath)

... Cont. Active transport - Na⁺/K⁺ pump

- Notes re. Exp'al Setup: • electrodes
- inject Na⁺ into cell by passing current through pipette

• current flow is **between two electrodes** (Na⁺ and Li⁺ filled electrodes) and **NOT** through the cell membrane

Recapping Active Transport - Na⁺/K⁺ pump

- · constant transport of Na⁺ & K⁺ essential for viability
- hydrolysis of ATP used to drive Na⁺/K⁺ pump (*i.e.*, pump acts as an ATPase)
- \bullet pump specific for Na+ $_{\rm out};$ but not same requirement on K+ $_{\rm in}$ (in absence of K outside activity is about 10% of normal)
- ouabain commonly used glycoside which blocks pump

Reminder about the Action Potential...(Ch.6)

Calcium Pumps

- · High buffering capacity for intracellular calcium (Ca2+) essential to role in multitude of specific processes
- Examples: vesicle fusion and release of NT; 2nd messenger; muscle contraction; activation of ion channels; regulation of cytoplasmic enzymes: etc.
- · Ca2+ entry through plasma membrane (specific channels) but also released from intracellular stores (ER, SR, mitochondria)
- FURA2, Arsenazo III, aequorin dye indicators of free Ca2+
- · Ca2+ ATPase responsible for expulsion across plasma membrane and also into intracellular compartments
- [Ca²⁺]_i ca. 10-100 nM; [Ca²⁺]_o ca. 2-5 mM

Positive feedback cascade

Note: AP - depends on passive current, but ions moving cause majority of ΔV_m

Voltage-gated Na⁺ channels open in a positive feedback loop

cont. Calcium pumps

SR ATPase: high density in membranes, rapid recovery from muscle contraction

Analogous to that described for Na/K ATPase; high affinity binding of 2 Ca2+; enzyme then phosphorylated, conformational change and release of Ca2+ on other side

Plasma membrane Ca²⁺ ATPase has single high affinity site for Ca²⁺ and only one Ca2+ expelled

Na⁺-Ca²⁺ Exchange – transporter molecule coupled to inward movement of Na⁺ down [] gradient = energy to drive Ca²⁺ uphill

NCX transport system - one Ca2+ out for 3 Na+ in

Although NCX exchanger has lower affinity for Ca2+ it has higher density in membrane and ca. 50 greater capacity

Cont... the AP, but....

How is the inflow of Na⁺ stopped? Na⁺ - inactivation What about K⁺? Voltage-gated K⁺ channels &

Introduced the "microscopic" level of ionic current flow (channels)

"Macroscopic" currents - voltage clamp ("whole" cell) Classical analysis by Hodgkin and Huxley, 1952

8

More on the AP next lecture