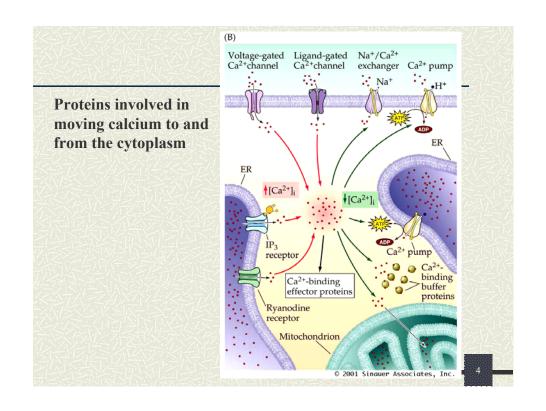
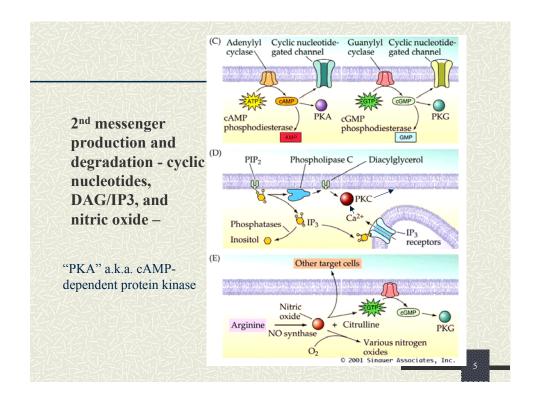
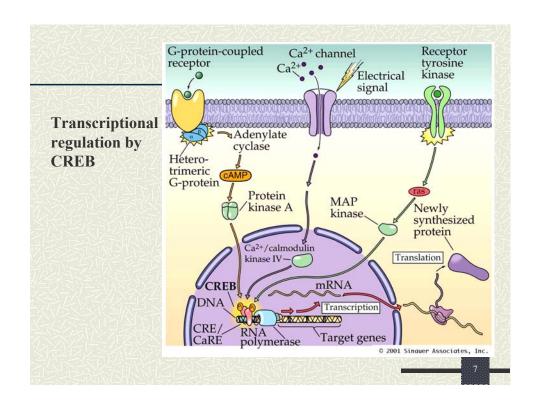

ZOO332H1S

Lecture 9
2nd Messenger Add-in Notes and Topics
(AJE 2003)


(Ref: Ch. 10, 16 (in part), other)


Presynaptic terminal – Effects of Ca²⁺ on local catecholamine production

- 1. AP
- 2. v-gated Ca channels
- 3. Increase 2nd messenger
- 4. Activ'n PK
- 5. TH phosph'ated
- 6. Increase catecholamine synth.
- 7. Increase NT release
- 8. Increase postsynaptic response
- (9.) ?

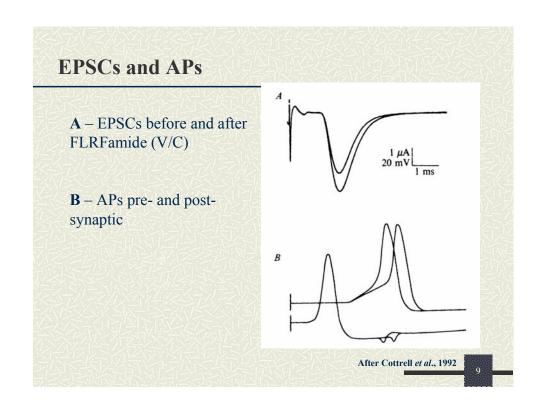

١			VALUE OF A PARTY OF A
Second messenger	Sources	Intracellular targets	Removal mechanisms
Ca ²⁺	Plasma membrane: Voltage-gated Ca ²⁺ channels Various ligand- gated channels	Calmodulin Protein kinases Protein phosphatases Ion channels Synaptotagmin Many other Ca ²⁺ - binding proteins	Plasma membrane: Na+/Ca ²⁺ exchanger Ca ²⁺ pump Endoplasmic reticulum: Ca ²⁺ pump
	Endoplasmic reticulum: IP ₃ receptors Ryanodine receptors		Mitochondria
Cyclic AMP	Adenylyl cyclase acts on ATP	Protein kinase A Cyclic nucleotide- gated channels	cAMP phosphodiesterase
Cyclic GMP	Guanylyl cyclase acts on GTP	Protein kinase G Cyclic nucleotide- gated channels	cGMP phosphodiesterase
IP ₃	Phospholipase C acts on PIP ₂	IP ₃ receptors on endoplasmic reticulum	Phosphatases
Diacylglycerol	Phospholipase C acts on PIP ₂	Protein kinase C	Various enzymes
Nitric oxide	Nitric oxide synthase acts on arginine	Guanylyl cyclase	Spontaneous oxidation

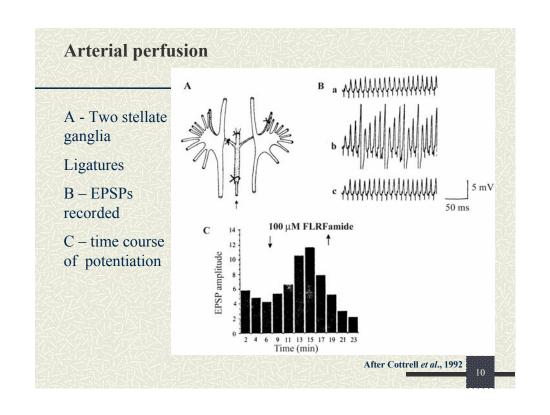
Transcriptional regulation by CREB

- multiple signalling pathways converge (common end point via CREB) by activating kinases that phosphorylate CREB (not only cAMP)
- CREB is a ubiquitous transcriptional activator, when phosphorylated can greatly potentiate transcription
- eg., PKA, Ca²⁺/calmodulin kinase IV, and MAP kinase (when increased intracellular Ca²⁺ induces phosphorylation of CREB, CRE site referred to as CaRE)
- phosphorylation of CREB allows it to bind co-activators, which then stimulate RNA polymerase to begin synthesis of mRNA
- · RNA processed and exported to cytoplasm
- mRNA > translation into protein

FMRFamide Related Peptides - Squid

Background: various FaRPs already identified in molluscs


various effects: changes in membrane conductance to different ions, 2nd messenger activation and G proteins, effects without change in membrane permeability, ligand-gated ion channel


Prep: Squid stellate ganglion – giant synapse

Recordings: voltage clamp (postsynaptic currents - EPSC); intracellular recording of APs pre- and post-synaptically

Application of peptides: microinjection in ASW within stellate ganglion; arterial perfusion (aorta cannulated)

After Cottrell et al., 1992

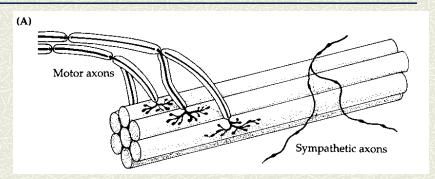
Summary

FLRFamide potentiates transmission at giant synapse:

increase in rate of rise of EPSP

increase in amplitude of EPSP

increase in EPSC (v/c)


Fatigability of this synapse

Mechanism?

11

Modulation of skeletal muscle contraction –

2nd messenger Story Continues -

- **#** Earliest prep to show neuromodulation (1923)
- **♯** NE facilitates neuromuscular transmission
- # Presynaptic and postsynaptic

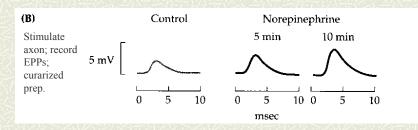
NMW 8-1

Some Specific Effects of Adrenergic Receptors

Skeletal NMJ, α-adrenergic receptors presynaptically (increase number of quanta released (curare))

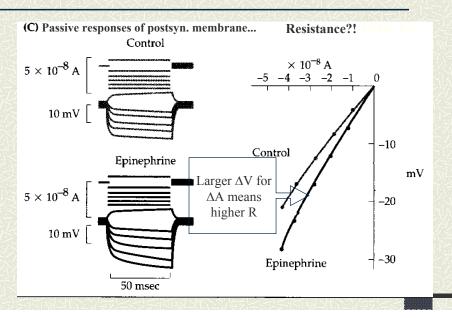
(recall an opposite effect - activation of $\alpha 2$ adrenergic receptor in presynaptic terminal (noradrenergic neuron) 'closed' Ca^{2+} channel)

 β - adrenergic receptors postsynaptically (activates Na-K pump - what happens ?)


Hyperpolarization

Decreased resting membrane conductance

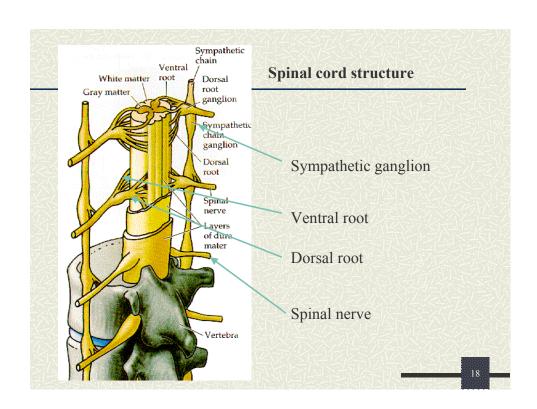
Specificity of action: general release on muscle, specific receptors on target cell

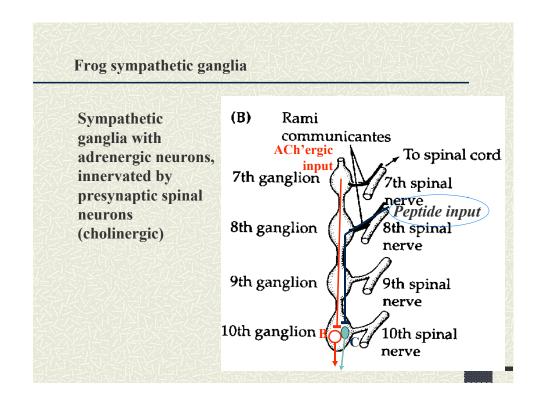

12

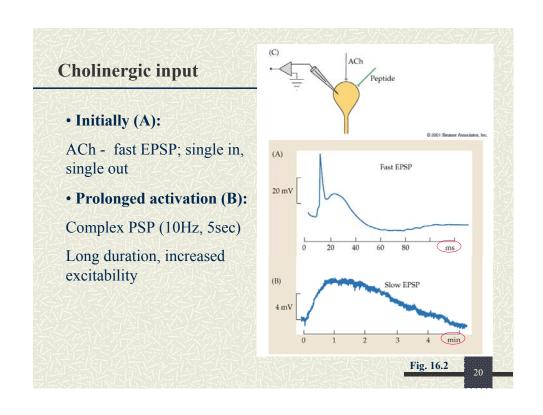
Noradrenalin at NMJ Isolate Pre- and Post-Synaptic effects

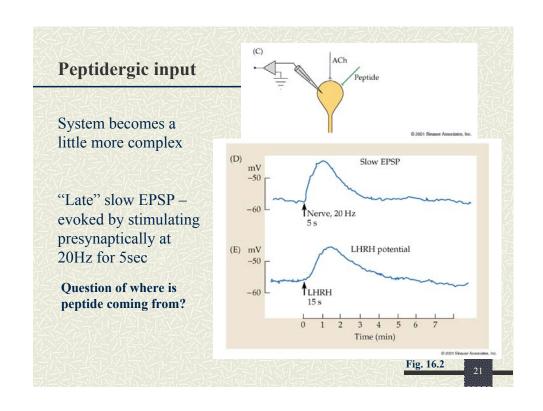
- NA (noradrenalin) increases EPP amplitude
- Increase in quanta released show presynaptic effect
- **■** How causes increase in NT release?
- **■** Slow time course (*i.e.*, time before see effect)
- \blacksquare Effect blocked by α -adrenergic receptor antagonists

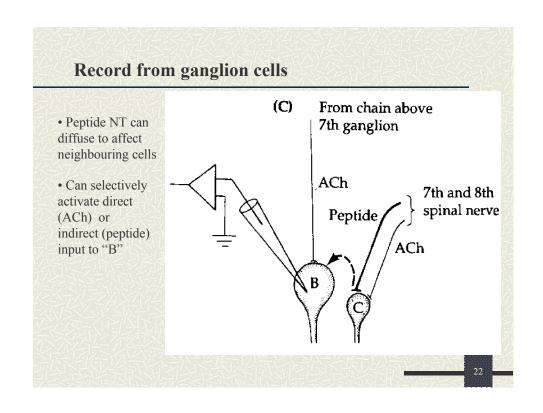
Also decrease in muscle membrane conductance, producing larger EPP's -- so both pre- and post-synaptic!

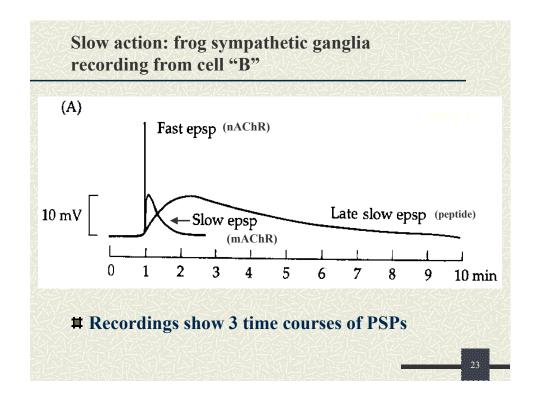


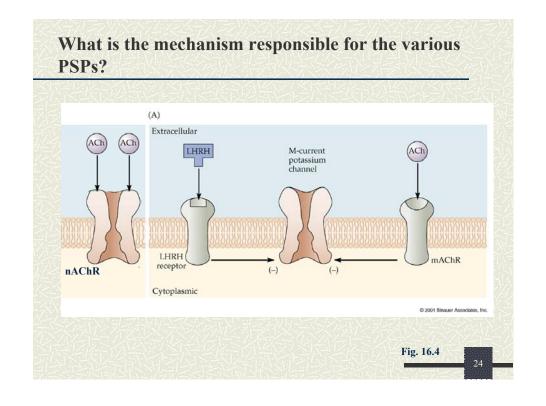

How do we test for indirect action of NT?

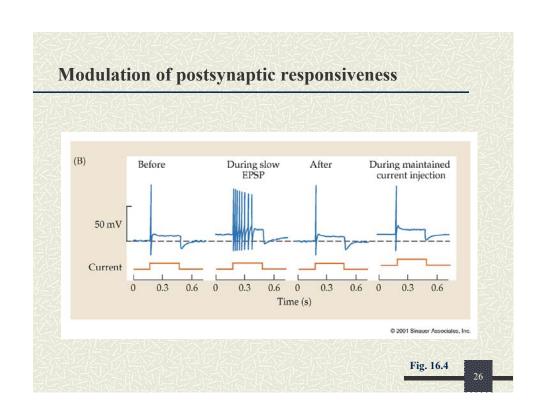

- # Action is *slow*: seconds to minutes, not milliseconds
- ■ Action can be enhanced or inhibited by application of appropriate compounds
- **♯** Action can be mimicked using components of pathway
- ★ Known components of 2nd messenger systems can be assayed
- Site of action of NT is usually distant from ion channels (but recall P/C experiments in heart atrial muscle and mAChRs)

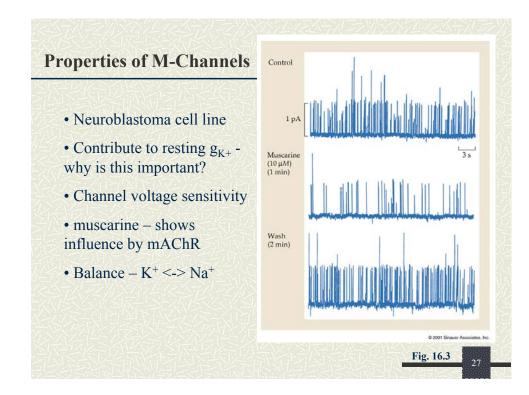

In vivo example of combined effects of two types of AChR and a peptide in a frog sympathetic ganglia


- preparation location: outside spinal cord
- input to B and C cells of sympathetic ganglion
- electrical recordings





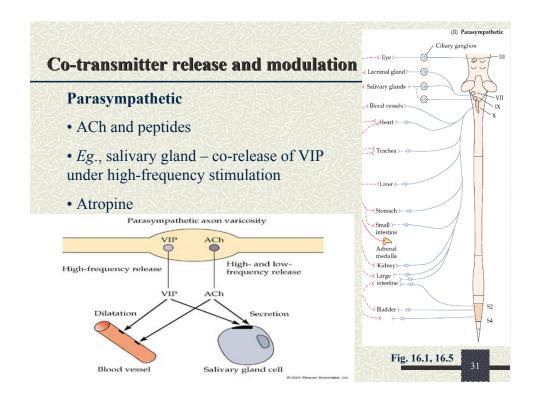

cont. 3 time courses of PSPs - modulation fo a K+ channel


- mAChR activated, effect on M-current K+ channel; closes
- •M-current K⁺ channels voltage activated threshold for activation near resting potential (*i.e.*, some open at rest)

what happens when close these channels?

- resting conductances no longer matched (Na⁺ vs. K⁺)
- cell depolarizes (Na⁺), causing the slow EPSP; this is small, insufficient to evoke AP....**BUT...**

2:

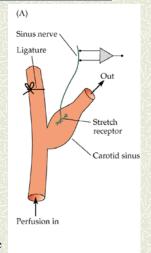


cont...M-current K+ channels

- broad distribution in nervous system (SC, hippo, cerebral cortex)
- acute control strong m-current, one-to-one (dilatation of pupil)
- broader, more continuous downstream effects; suppress m-current, tonic activity, up or down (more or less *vasoconstriction*)

Sable 16.1	Table 16.1 (Part 1) Characteristic actions of adrenergic sympathetic and cholinergic parasympathetic nervous systems				
		Effect of			
		Adrenergic sympathetic		Cholinergic parasympathetic	
	Organ	Action"	Receptor ^b	Action	
	Eye Iris Radial muscle Circular muscle	Contracts	$\frac{\alpha_1}{-}$	 Contracts	
	Ciliary muscle	(Relaxes)	β	Contracts	
	Heart Sinoatrial node Contractility	Accelerates Increases	β_1 β_1	Decelerates Decreases (atria	
	Vascular smooth muscle Skin, splanchnic vessels Skeletal muscle vessels	Contracts Relaxes	α β_2	Ξ	
	Nerve endings	Inhibits release	α_{2}	_	
	Bronchiolar smooth muscle	Relaxes	β_2	Contracts	
				© 2001 Sinauer	

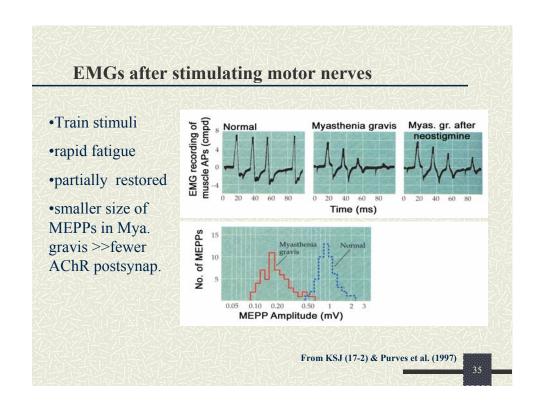
Гable 16.1	Table 16.1 (Part 2) Characteristic actions of ad and cholinergic parasympa			
			of Cholinergic	
		Adrenergic sympathetic		parasympathetic
	Gastrointestinal tract			
	Smooth muscle			
	Walls	Relaxes	α_1, β_2	Contracts
	Sphincters	Contracts	α_1	Relaxes
	Secretion	_	_	Increases
	Myenteric plexus	Inhibits	α	Activates
	Genitourinary smooth muscle			
	Bladder wall	Relaxes	β_2	Contracts
	Sphincter	Contracts	α_1	Relaxes
	Metabolic functions			
	Liver	Gluconeogenesis	α/β ,	_
		Glycogenolysis	α/β_2^2	_
				© 2001 Sinauer Associates,

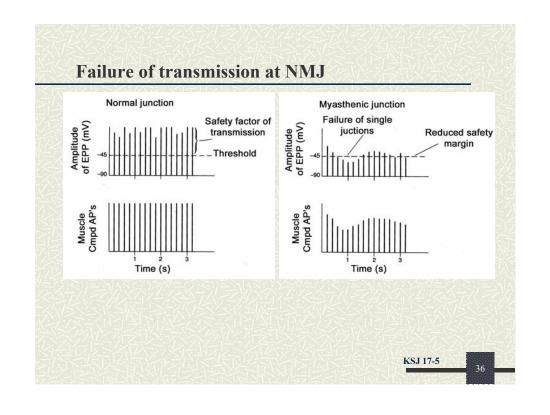

Purinergic Transmission - ATP and Adenosine

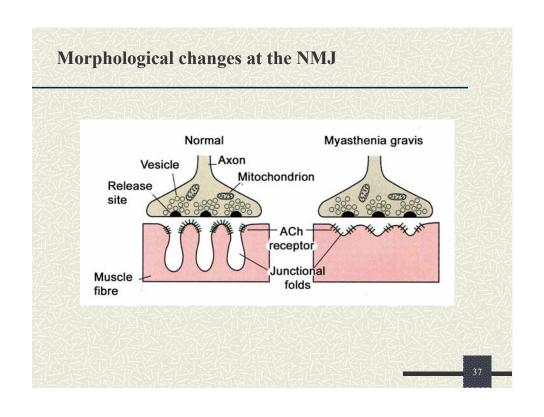
- **Sympathetic transmitters** (co-transmitters) (with noradrenalin or ACh (special cases where ACh released from sympathetic)
- unusual ATP can activate ionotropic receptor (MEPPs in sm muscle uterus)
- two main families of receptors for purines: P1, P2
- P1 adenosine
- P2 ATP

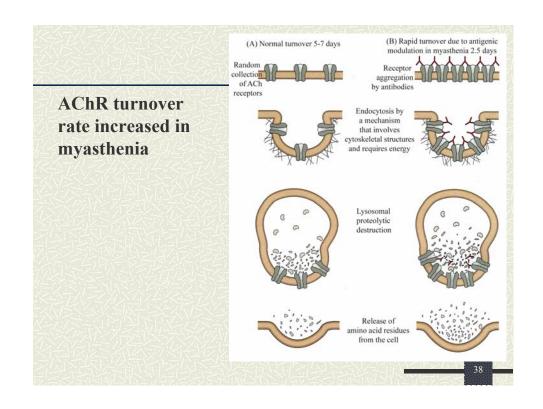
Eg., Reflex arc controlling blood pressure

- Maintaining blood pressure in head
- Stretch receptors in carotid artery (sinus)
- Lying down stretches sinus stretch receptor, increased firing R8, inhibition of sympathetic output cardiac output decreased, bp down, heart R8 decreased
- Standing drop in sinus pressure, decreased firing R8, release of inhibition of sympathetic arm of reflex
- basics of reflex, much more complex ("black box")


CS > brainstem nucleus (solitary tract) > project to brainstem reticular formation > autonomic preganglionic neurons (high rate of firing) > inhibition of cardiovascular sympathetic outputs




2

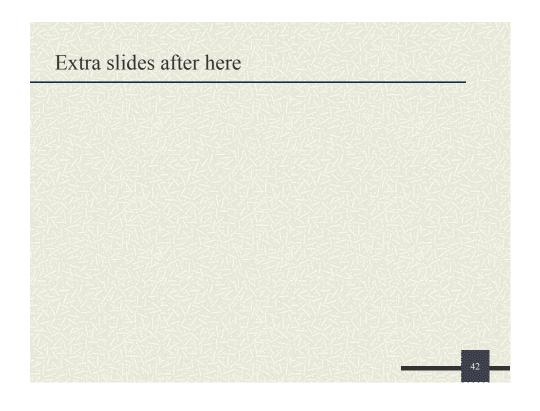

Myasthenia gravis - History MG

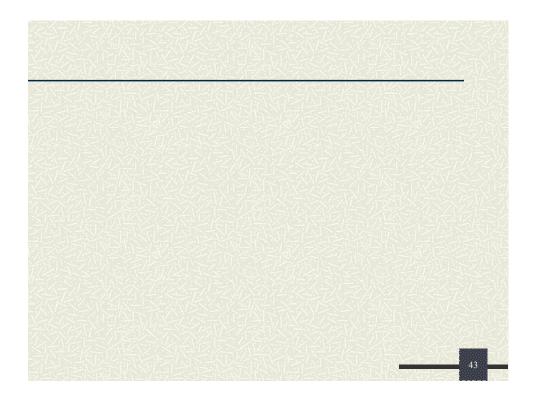
- muscle fibres generally unaffected record CAP
- curare
- motor unit jitter
- raise antibodies against AChR in rabbits
- experimental autoimmune myasthenia gravis
- safety factor in generating APs in muscle fibres

Etiology

- antibodies usually directed against one of two sites
 - α-bungarotoxin binding site (also ACh binding site)
 - α-subunit area (*main immunogenic region*)


Myasthenic antibodies not usually bind to receptor site (α -BTX)


- may hinder interaction of ACh with AChR
- cross linking of AChR's >> degradation turnover too rapid
- persistent viral infection (alters membrane properties)
- bacterial or viral infection antigenic epitope to which antibodies made similar to peptide sequence in ACh receptor α-chain
- Thymus gland abnormalities are usually present in MG patients.


3

Other notes of interest

- onset of symptoms may be gradual or abrupt
- · any skeletal muscle
- patients with more severe disease weak even at rest
- MG can be remitting, static, or progressive
- elevated level of AChR-Ab in up to 90% of patients
- correlates well with decrement of compound motor AP of muscle following repetitive nerve stimulation (90%)
- muscarinic side effects of anticholinesterase medications (low doses of atropine)

Cont.... Etiology

•MG - more complex disease than merely autoimmune

ACh receptors

•Two distinct types MG: (1) acquired autoimmune form, (2) hereditary form (no Ab)

(2): affects other aspects transmitter release, metabolism of ACh, AChR (numbers, structure and function), etc.

eg. (a) lack of AChEase: phenotype....

Repetitive firing

MEPPs

EPPs

eg. (b) "slow channel syndrome" - reverse symptoms of autoimmune-type (limbs rather than eyes, speech, swallowing).

- Kinetics of opening/closing of AChR channel; developmental transition not achieved
- low ampl. MEPPs (T-tubule system, loss of receptors)

Catecholamines

- act exclusively by activating G-protein-coupled receptors
- includes: molecules with catechol ring (benzene ring with two hydroxyl groups position 3 and 4) and amine (NH₂) off C1(ring C1-C-C-NH₂)
- many contribute to complex behaviours hyperactivity and repetitive behaviour pattern; vomiting (antagonists to DA receptors induce vomiting; can also induce catalepsy (DA receptor subtypes activate or inhibit adenylyl cyclase (see later))
- adrenalin and noradrenalin each act on α and β adrenergic receptors
- activation of α 1-receptors usually elicits slow depolarization linked to inhibition of K+ channels; α 2-receptors produces slow hyperpolarization due to activation of different type of K+ channel
- 3 subtypes of β -adrenergic receptors; most blockers (" β -blockers") have action in heart and respiratory system

45

Indirect Mechanisms of Synaptic Transmission - Story Summary

- some neurotransmitters act on metabotropic receptors which influence ion channels and pumps indirectly through membrane-associated or cytoplasmic 2nd messengers
- action can be to modulate direct synaptic transmission or indirect neurotransmission can act alone at a synapse
- often mediated (after NT acts on receptor) G-proteins (because they bind guanine nucleotides), composed of 3 subunits (α –, β –, γ –) which dissociate when activated and act on intracellular targets (s.a.: directly on an ion channel; or indirectly on an ion channel by activation of enzymes that upregulate a 2nd messenger pathway which usually leads to phosphorylation of a target channel)
- prime targets are K⁺ and Ca²⁺ channels
- action on presynaptic terminal to modify NT release
- action on postsynaptic terminal to alter spontaneous activity and responses to synaptic input
- note that there is an element of controversy over whether α -subunit dissociates and acts on the target, or all three dissociate and the $\beta\gamma$ subunits act on the target