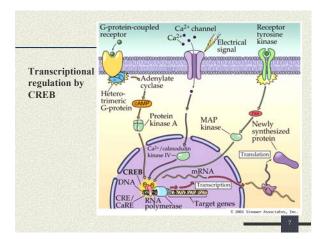

Presynaptic terminal – Effects of Ca²⁺ on local catecholamine productor. AP v-gated Ca channels. Increase 2nd messenger. Activ'n PK TH phosph'ated Increase catecholamine synth. Increase NT release. Increase postsynaptic response. (9) ?

A) Second messenger	Sources	Intracellular targets	Removal mechanisms
Ca ²⁺	Plasma membrane: Voltage-gated Ca ²⁺ channels Various ligand- gated channels Endoplasmic reticulum: IP ₃ receptors Ryanodine receptors	Calmodulin Protein hosphatases Protein phosphatases Ion channels Synaptotagmin Many other Ca ^{2+,} binding proteins	Plasma membrane: Na ⁺ /Ca ²⁺ exchanger Ca ²⁺ pump Endoplasmic reticulum: Ca ²⁺ pump Mitochondria
Cyclic AMP	Adenylyl cyclase acts on ATP	Protein kinase A Cyclic nucleotide- gated channels	cAMP phosphodiesterase
Cyclic GMP	Guanylyl cyclase acts on GTP	Protein kinase G Cyclic nucleotide- gated channels	cGMP phosphodiesterase
IP_3	Phospholipase C acts on PIP ₂	IP3 receptors on endoplasmic reticulum	Phosphatases
Diacylglycerol	Phospholipase C acts on PIP ₂	Protein kinase C	Various enzymes
Nitric oxide	Nitric oxide synthase acts on arginine	Guanylyl cyclase	Spontaneous oxidation

Transcriptional regulation by CREB

• multiple signalling pathways converge (common end point via CREB) by activating kinases that phosphorylate CREB (not only cAMP)


 \bullet CREB is a ubiquitous transcriptional activator, when phosphorylated can greatly potentiate transcription

- eg., PKA, Ca^2-/calmodulin kinase IV, and MAP kinase (when increased intracellular Ca^2+ induces phosphorylation of CREB, CRE site referred to as CaRE)

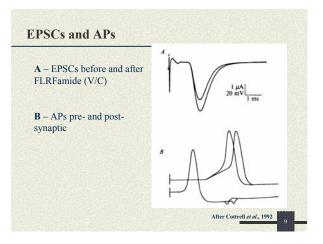
• phosphorylation of CREB allows it to bind co-activators, which then stimulate RNA polymerase to begin synthesis of mRNA

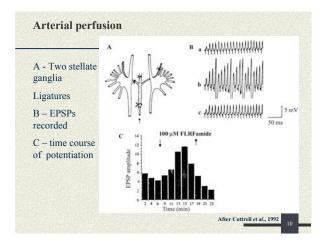
• RNA processed and exported to cytoplasm

mRNA > translation into protein

FMRFamide Related Peptides - Squid

Background: various FaRPs already identified in molluscs

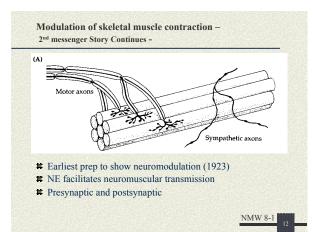

various effects: changes in membrane conductance to different ions, 2nd messenger activation and G proteins, effects without change in membrane permeability, ligand-gated ion channel


Prep: Squid stellate ganglion - giant synapse

Recordings: voltage clamp (postsynaptic currents - EPSC); intracellular recording of APs pre- and post-synaptically

After Cottrell et al., 1992

Application of peptides: microinjection in ASW within stellate ganglion; arterial perfusion (aorta cannulated)



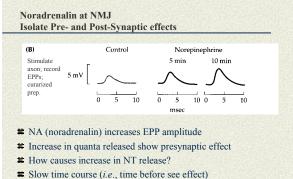
Summary

FLRFamide potentiates transmission at giant synapse: increase in rate of rise of EPSP increase in amplitude of EPSP increase in EPSC (v/c) Fatigability of this synapse Mechanism?

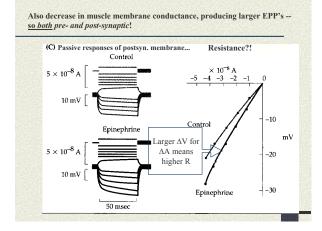
4

Some Specific Effects of Adrenergic Receptors

Skeletal NMJ, α -adrenergic receptors presynaptically (increase number of quanta released (curare))


(recall an opposite effect - activation of $\alpha 2$ adrenergic receptor in presynaptic terminal (noradrenergic neuron) 'closed' Ca²⁺ channel)

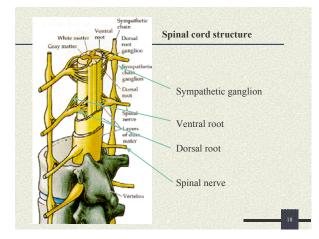
 $\beta\text{-}$ adrenergic receptors postsynaptically (activates Na-K pump - what happens ?)


Hyperpolarization

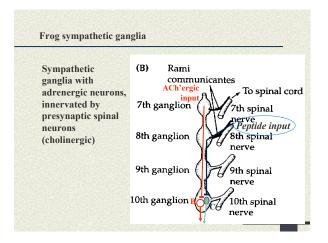
Decreased resting membrane conductance

Specificity of action: general release on muscle, specific receptors on target cell

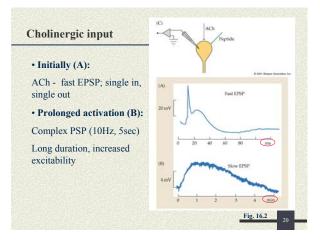
- # Effect blocked by α -adrenergic receptor antagonists

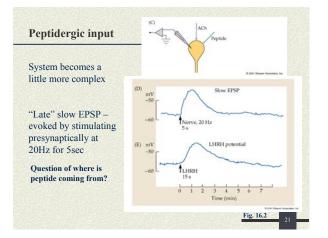


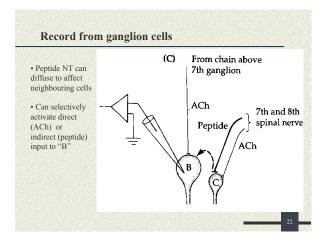
How do we test for *indirect* action of NT?

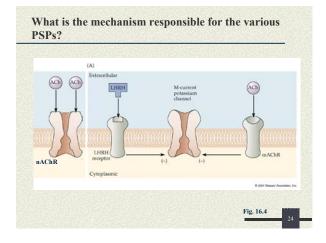

- Action is *slow*: seconds to minutes, not milliseconds
- Action can be enhanced or inhibited by application of appropriate compounds
- Action can be mimicked using components of pathway
- Known components of 2nd messenger systems can be assayed
- Site of action of NT is usually distant from ion channels (<u>but</u> recall P/C experiments in heart atrial muscle and mAChRs)

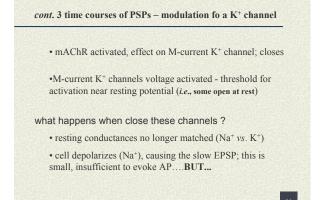

In vivo example of combined effects of two types of AChR and a peptide in a frog sympathetic ganglia

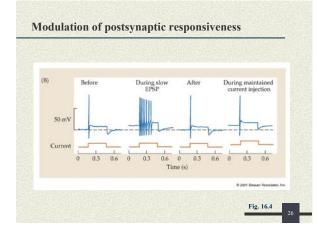

- preparation location: outside spinal cord
- input to B and C cells of sympathetic ganglion
 electrical recordings

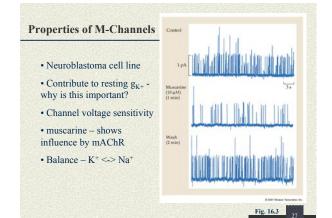

6

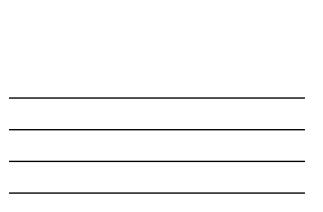


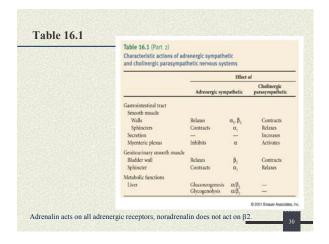


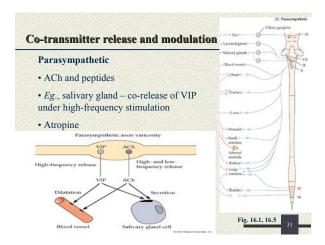











cont...M-current K⁺ channels

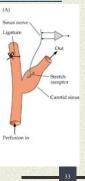
- broad distribution in nervous system (SC, hippo, cerebral cortex)
- acute control strong m-current, one-to-one (dilatation of pupil)
- broader, more continuous downstream effects; suppress m-current, tonic activity, up or down (more or less *vasoconstriction*)

Table 16.1 (Part 1) Characteristic actions of ad and cholinergic parasympa				
	Effect of			
	Adrenergic sy	mpathetic	Cholinergic parasympathetic	
Organ	Action*	Receptor	Action	
Eye Iris				
Radial muscle	Contracts	α,	-	
Circular muscle		-	Contracts	
Ciliary muscle	(Relaxes)	β	Contracts	
Heart				
Sinoatrial node	Accelerates	β ₁	Decelerates	
Contractility	Increases	β	Decreases (atria)	
Vascular smooth muscle				
Skin, splanchnic vessels	Contracts	α	_	
Skeletal muscle vessels	Relaxes	β ₂		
Nerve endings	Inhibits release	α,	-	
Bronchiolar smooth muscle	Relaxes	β2	Contracts	
			© 2001 Simular /	

Purinergic Transmission - ATP and Adenosine

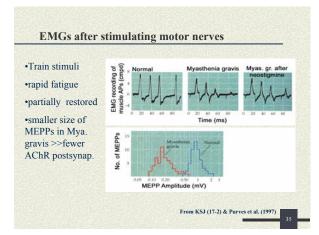
- **Sympathetic transmitters** (co-transmitters) (with noradrenalin or ACh (special cases where ACh released from sympathetic)
- unusual ATP can activate ionotropic receptor (MEPPs in sm muscle uterus)
- two main families of receptors for purines: P1, P2
- P1 adenosine
- P2 ATP

Eg., Reflex arc controlling blood pressure

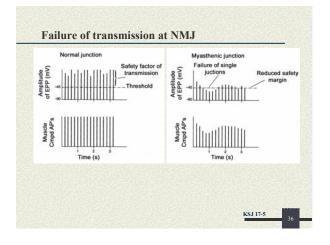

- · Maintaining blood pressure in head
- Stretch receptors in carotid artery (sinus)

• Lying down stretches sinus stretch receptor, increased firing R8, inhibition of sympathetic output – cardiac output decreased, bp down, heart R8 decreased

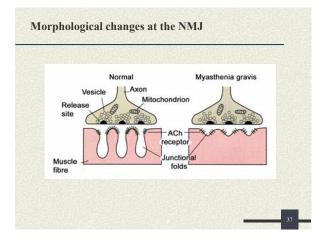
• Standing – drop in sinus pressure, decreased firing R8, release of inhibition of sympathetic arm of reflex

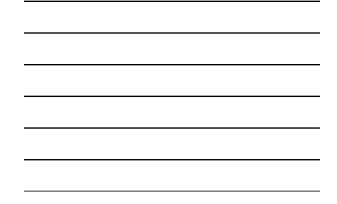

• basics of reflex, much more complex ("black box")

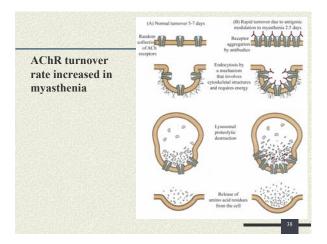
CS > brainstem nucleus (solitary tract) > project to brainstem reticular formation > autonomic preganglionic neurons (high rate of firing) > inhibition of cardiovascular sympathetic outputs

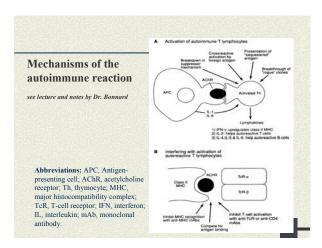


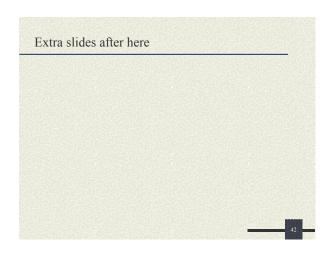
Myasthenia gravis - History MG

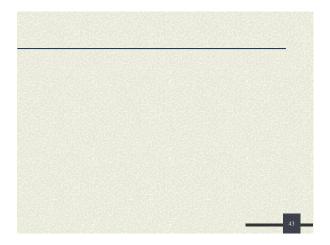

- muscle fibres generally unaffected record CAP
- curare
- motor unit jitter
- raise antibodies against AChR in rabbits
- experimental autoimmune myasthenia gravis
- safety factor in generating APs in muscle fibres

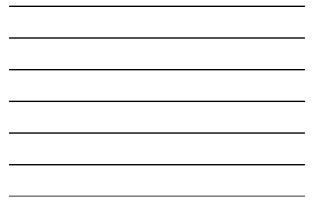







Etiology


- antibodies usually directed against one of two sites • α -bungarotoxin binding site (also ACh binding site) • α-subunit area (*main immunogenic region*)
- Myasthenic antibodies not usually bind to receptor site (α -BTX)
 - may hinder interaction of ACh with AChR
 - cross linking of AChR's >> degradation turnover too rapid
- persistent viral infection (alters membrane properties)
 bacterial or viral infection antigenic epitope to which
- antibodies made similar to peptide sequence in ACh receptor α-chain • Thymus gland abnormalities are usually present in MG patie


Other notes of interest

- onset of symptoms may be gradual or abrupt
- any skeletal muscle
- · patients with more severe disease weak even at rest
- MG can be remitting, static, or progressive
- elevated level of AChR-Ab in up to 90% of patients
- correlates well with decrement of compound motor AP of muscle following repetitive nerve stimulation (90%)
- muscarinic side effects of anticholinesterase medications (low doses of atropine)

Cont.... Etiology

 MG - more complex disease than merely autoimmune ACh receptors
 Two distinct types MG: (1) acquired autoimmune form, (2) hereditary form (no Ab)
 (2): affects other aspects transmitter release, metabolism of ACh, AChR (numbers, structure and function), *etc. eg.* (a) lack of AChEase: phenotype.... Repetitive firing

MEPPs

EPPs

eg. (b) "slow channel syndrome" - reverse symptoms of autoimmune-type (limbs rather than eyes, speech, swallowing).Kinetics of opening/closing of AChR channel; developmental transition not achieved

• low ampl. MEPPs (T-tubule system, loss of receptors)

Catecholamines

act exclusively by activating G-protein-coupled receptors

 \bullet includes: molecules with catechol ring (benzene ring with two hydroxyl groups position 3 and 4) and amine (NH2) off C1(ring C1-C-C-NH2)

 many contribute to complex behaviours - hyperactivity and repetitive behaviour pattern; vomiting (antagonists to DA receptors induce vomiting; can also induce catalepsy (DA receptor subtypes activate or inhibit adenylyl cyclase (see later))

- adrenalin and noradrenalin - each act on $\alpha-\,$ and $\beta-$ adrenergic receptors

• activation of α l-receptors usually elicits slow depolarization linked to inhibition of K+ channels; $\alpha 2$ -receptors produces slow hyperpolarization due to activation of different type of K+ channel

+ 3 subtypes of β -adrenergic receptors; most blockers (" β -blockers") have action in heart and respiratory system

Indirect Mechanisms of Synaptic Transmission -

Story Summary

can act alone at a synapse

input

 ${\ensuremath{\cdot}}$ prime targets are $K^{\scriptscriptstyle +}$ and $Ca^{2{\scriptscriptstyle +}}$ channels • action on presynaptic terminal to modify NT release

• some neurotransmitters act on metabotropic receptors which influence ion channels

• often mediated (after NT acts on receptor) G-proteins (because they bind guanine nucleotides), composed of 3 subunits (α -, β -, γ -) which dissociate when activated and act on intracellular targets (s.a.: directly on an ion channel; or indirectly on an ion channel by activation of enzymes that upregulate a 2nd messenger pathway which usually leads to phosphorylation of a target channel)

· action on postsynaptic terminal to alter spontaneous activity and responses to synaptic

• note that there is an element of controversy over whether α -subunit dissociates and acts on the target, or all three dissociate and the $\beta\gamma$ subunits act on the target

action can be to modulate direct synaptic transmission or indirect neurotransmission

and pumps indirectly through membrane-associated or cytoplasmic 2nd messengers

16