

A) Second messenger	Sources	Intracellular targets	Removal mechanisms
Ca ²⁺	Plasma membrane: Voltage-gated Ca ²⁺ channels Various ligand- gated channels Endoplasmic reticulum: IP ₃ receptors Ryanodine receptors	Calmodulin Protein kinases Protein phosphatases Ion channels Synaptotagmin Many other Ca ² *- binding proteins	Plasma membrane: Na ⁺ /Ca ²⁺ exchanger Ca ²⁺ pump Endoplasmic reticulum: Ca ²⁺ pump Mitochondria
Cyclic AMP	Adenylyl cyclase acts on ATP	Protein kinase A Cyclic nucleotide- gated channels	cAMP phosphodiesterase
Cyclic GMP	Guanylyl cyclase acts on GTP	Protein kinase G Cyclic nucleotide- gated channels	cGMP phosphodiesterase
1P ₃	Phospholipase C acts on PIP ₂	IP3 receptors on endoplasmic reticulum	Phosphatases
Diacylglycerol	Phospholipase C acts on PIP ₂	Protein kinase C	Various enzymes
Nitric oxide	Nitric oxide synthase acts on arginine	Guanylyl cyclase	Spontaneous oxidation

Transcriptional regulation by CREB

multiple signalling pathways converge (common end point via CREB) by activating kinases that phosphorylate CREB (not only cAMP)

 \bullet CREB is a ubiquitous transcriptional activator, when phosphorylated can greatly potentiate transcription

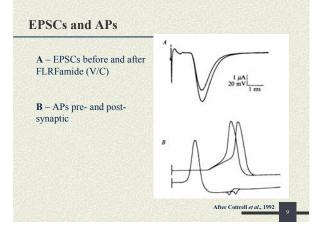
- eg., PKA, Ca^2-/calmodulin kinase IV, and MAP kinase (when increased intracellular Ca2+ induces phosphorylation of CREB, CRE site referred to as CaRE)

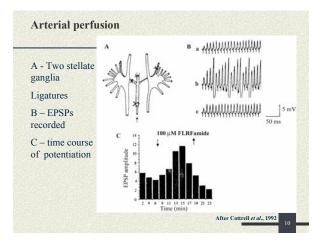
 \bullet phosphorylation of CREB allows it to bind co-activators, which then stimulate RNA polymerase to begin synthesis of mRNA

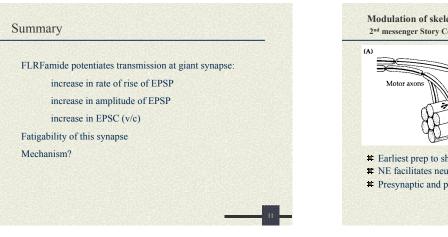
- RNA processed and exported to cytoplasm
- mRNA > translation into protein

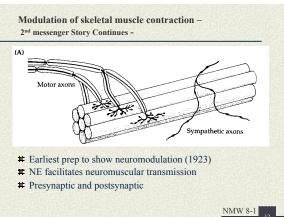
FMRFamide Related Peptides - Squid

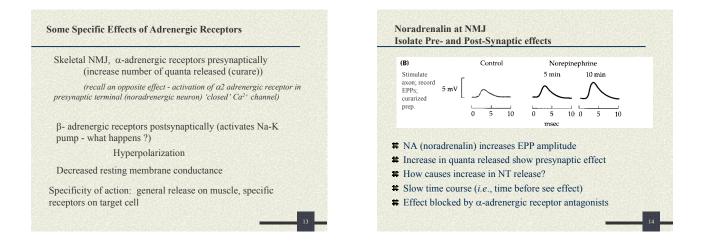
Background: various FaRPs already identified in molluscs

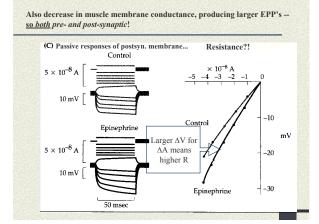

various effects: changes in membrane conductance to different ions, $2^{\rm nd}$ messenger activation and G proteins, effects without change in membrane permeability, ligand-gated ion channel

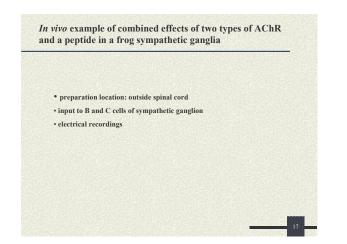

Prep: Squid stellate ganglion - giant synapse

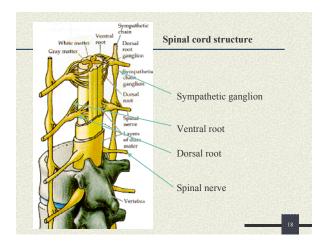

Recordings: voltage clamp (postsynaptic currents - EPSC); intracellular recording of APs pre- and post-synaptically

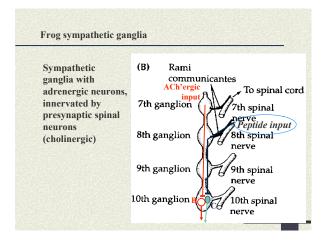

Application of peptides: microinjection in ASW within stellate ganglion; arterial perfusion (aorta cannulated)

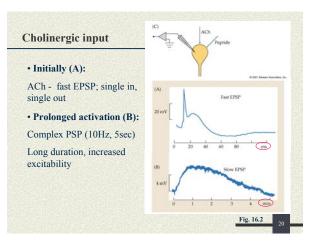

After Cottrell et al., 1992

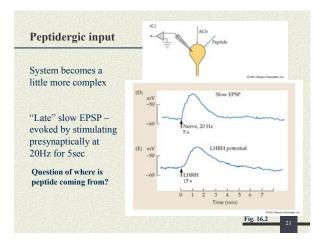


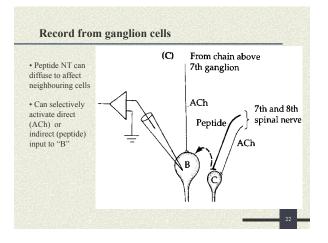


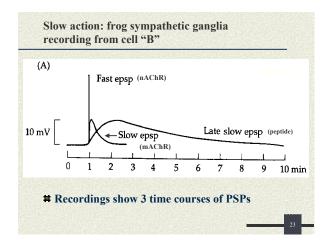


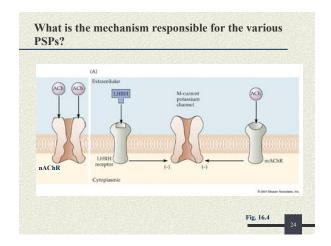


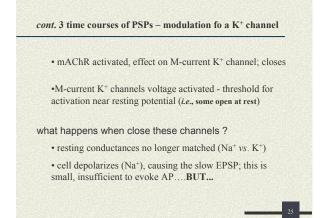

How do we test for *indirect* action of NT?

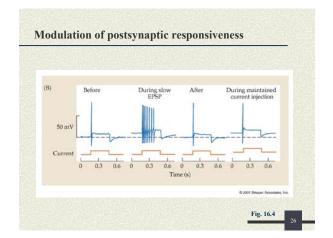

- Action is *slow*: seconds to minutes, not milliseconds
 Action can be enhanced or inhibited by application of appropriate compounds
- # Action can be mimicked using components of pathway
- Known components of 2nd messenger systems can be assayed
- Site of action of NT is usually distant from ion channels (but recall P/C experiments in heart atrial muscle and mAChRs)

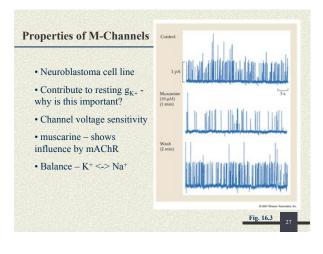


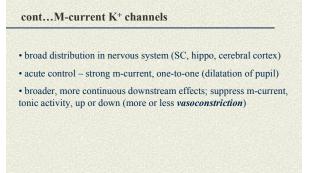


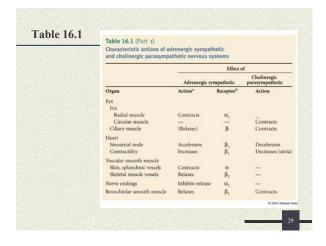


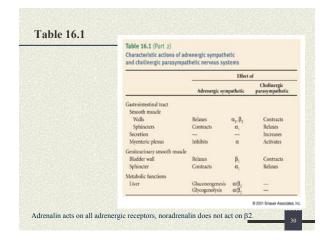


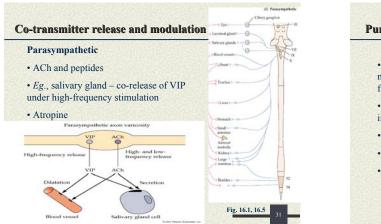


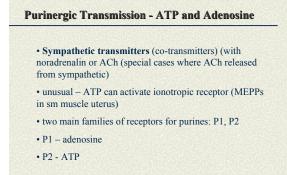


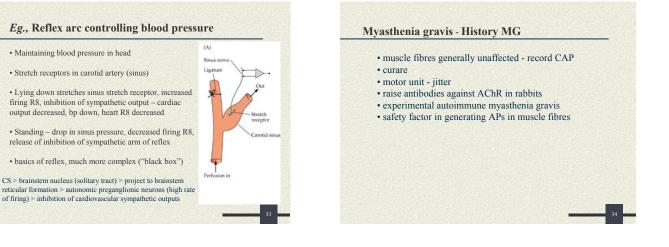


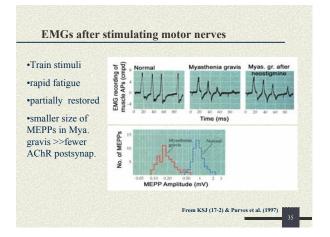


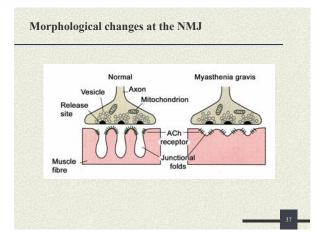


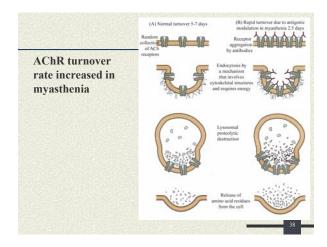


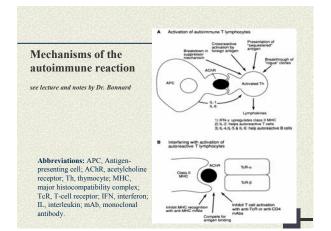


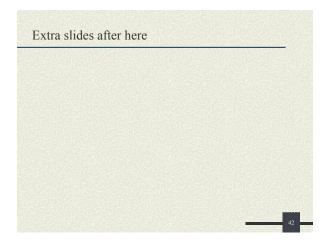


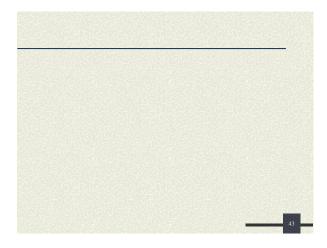




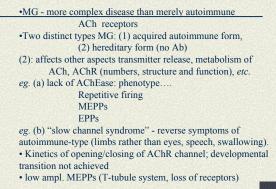





Etiology


- · antibodies usually directed against one of two sites • α-bungarotoxin binding site (also ACh binding site)
 - α-subunit area (*main immunogenic region*)
- Myasthenic antibodies not usually bind to receptor site (α -BTX) • may hinder interaction of ACh with AChR
 - cross linking of AChR's >> degradation turnover too rapid
- persistent viral infection (alters membrane properties)
 bacterial or viral infection antigenic epitope to which
 - antibodies made similar to peptide sequence in ACh receptor α-chain
- Thymus gland abnormalities are usually present in MG patien

Other notes of interest


- onset of symptoms may be gradual or abrupt
- any skeletal muscle
- · patients with more severe disease weak even at rest
- MG can be remitting, static, or progressive
- elevated level of AChR-Ab in up to 90% of patients
- correlates well with decrement of compound motor AP of muscle following repetitive nerve stimulation (90%)
- muscarinic side effects of anticholinesterase medications (low doses of atropine)

Cont.... Etiology

Catecholamines

· act exclusively by activating G-protein-coupled receptors

• includes: molecules with catechol ring (benzene ring with two hydroxyl groups position 3 and 4) and amine (NH $_2$) off C1(ring C1-C-C-NH $_2$)

 many contribute to complex behaviours - hyperactivity and repetitive behaviour pattern; vomiting (antagonists to DA receptors induce vomiting; can also induce catalepsy (DA receptor subtypes activate or inhibit adenylyl cyclase (see later))

• adrenalin and noradrenalin - each act on $\alpha-$ and $\beta-$ adrenergic receptors • activation of α l-receptors usually elicits slow depolarization linked to inhibition of K+ channels, $\alpha 2$ -receptors produces slow hyperpolarization due to activation of different type of K+ channel

- 3 subtypes of β -adrenergic receptors; most blockers (" β -blockers") have action in heart and respiratory system

Indirect Mechanisms of Synaptic Transmission -Story Summary

some neurotransmitters act on metabotropic receptors which influence ion channels
 and pumps indirectly through membrane-associated or cytoplasmic 2nd messengers

 action can be to modulate direct synaptic transmission or indirect neurotransmission can act alone at a synapse

• often mediated (after NT acts on receptor) G-proteins (because they bind guanine nucleotides), composed of 3 subunits ($\alpha-$, $\beta-$, $\gamma-$) which dissociate when activated and act on intracellular targets (s.a.: directly on an ion channel; or indirectly on an ion channel by activation of enzymes that upregulate a 2nd messenger pathway which usually leads to phosphorylation of a target channel)

 ${\mbox{ \bullet}}$ prime targets are K^{+} and Ca^{2+} channels

· action on presynaptic terminal to modify NT release

 action on postsynaptic terminal to alter spontaneous activity and responses to synaptic input

• note that there is an element of controversy over whether α -subunit dissociates and acts on the target, or all three dissociate and the $\beta\gamma$ subunits act on the target