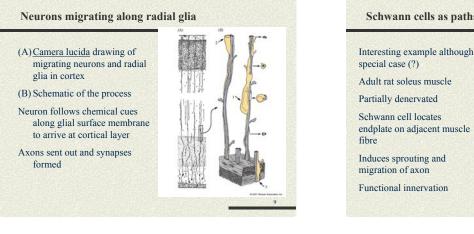
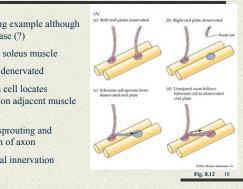
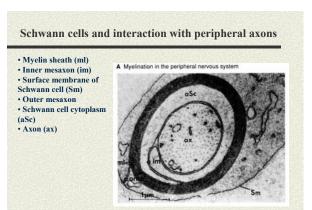

Fig. 8.1

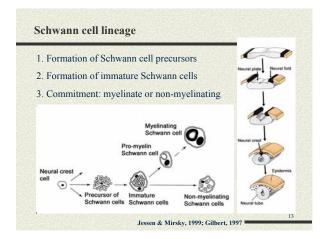
Connectivity amongst glia, neurons, and capillaries

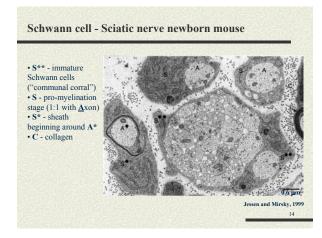


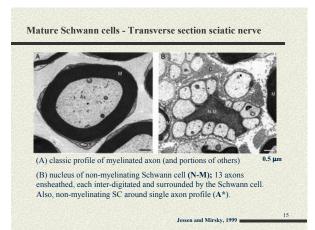
cont...Functions of Neuroglial Cells


During development


- Groupings of neurons into nuclei these nuclei are first outlined by glial cells (neurons arriving later)
- Radial glial cells used to guide migrating neurons (in cerebral cortex, hippocampus, cerebellum) (next slide)


11


Schwann cells as paths for outgrowth in PNS



Schwann Cells - the basics eripheral glial cells - myelinating and non-myelinating eilance on signalling from axons eneron-derived signals during development and when mature ew evidence supports glial-derived signalling as critical for neuronal survival during specific periods of development egulate molecular and f'al specialization's of axons; maturation of perineurial sheath

Summary points on Schwann cells

- glial lineage arises from neural crest (NC) cells
- major peripheral myelin protein (Po) found to be earliest glial cell marker (found in migrating NC cells)**
- Po expression modulated by axons (up and down...)
- narrow window for transition from precursors to Schwann cell (E14/E15--E17 rat (mouse E15)) ("no" precursors in mature nerves)
- β-neuregulins (axonal) bias NC cells to differentiate to glial cell, although some controversy needs to be resolved

**Bhattacharyya et al. 1991; Lee et al. 1997; etc.

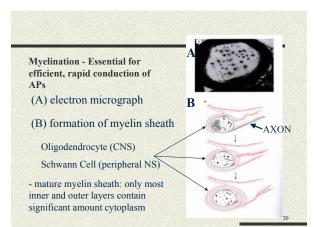
cont. summary points...1

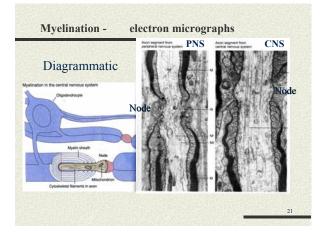
- \bullet dependence on signalling from axons for survival (β -neuregulin)
- Evidence: in vitro cultures and KO's, β -neuregulin essential for precursor cell survival and the change from precursor to glial cell
- period from about birth to 3 weeks get final differentiation step
- membrane synthesis, up and down regulation of genes
- transection of nerve leads to changes which revert glial phenotype to immature state
- · environment formed which would promote axonal re-growth
- ... and new evidence from new technology

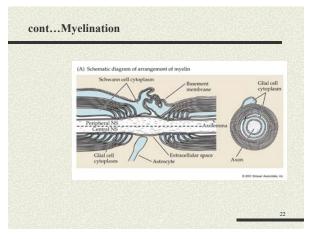
cont. summary points...2

Knock-out of Erbb3 gene

- a major receptor for β-neuregulin in crest cells and early glia
- initially number of DRG and motor neurons normal during embryogenesis (ca. E12)
- these mice lack Schwann-cell precursors and Schwann cells
- \bullet by E14, 80% of DRG neurons lost; by E18, 80% motorneurons were lost (as late as E16 all OK)
- chimeric experiments (Erbb3 in neurons but not 'glia')


cont. summary points...2


- DRG RIP too early to receive trophic signals from targets
- motorneurons last until E18 then die why?


* initial survival and migration to target independent of signals from immature glial cells

* BUT: target-derived and glial signals required for survival

* Note timing: link to transformation of glial precursors to immature glial cells usually occurs just prior to E18

cont. Myelination

- Myelin interrupted at nodes of Ranvier (1 1.5mm spacing)
- Measurements made indicate CV for fibres $> 11 \mu m$ is 6 times axon diameter; fibres $< 11 \mu m$ about 4.5 X

• Balance: thickness of myelin (increases R) and cross-sectional area of axon (decreases - causes increase in internal longitudinal R) - compromise: axon diameter 0.7 x overall fibre diameter

Distance between nodes optimized

cont. Myelination

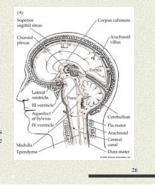
• Single Schwann cell makes myelin in one internode region (*ca.* 500 needed for single peripheral axon); oligodendrocyte can do several axons

- Formation of myelin by Schwann cells appears to be axon dependent-signaling; oligodendrocytes rely on astrocytes for signaling
- Myelin Basic Proteins found in both; group of 7 related proteins (alternative splicing variants)

24

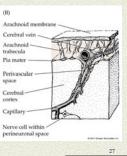
cont. Myelination

- Classic experiments done by Ritchie and co-workers (mostly on rabbit nerves)
- Location of V-gated channels not what you might expect!
- \textit{or}_{\bullet} Na⁺ channels conc'd in nodes of Ranvier; none paranodal
 - K⁺ channels conc'd under sheath (between nodes)
- V/C showed nodes displayed only inward currents and repol'n **NOT** by an increase of G_{K} + then what?


• Chronic demyelination by **diphtheria toxin** - Na⁺ channels eventually populate demyelinated region and then get continuous conduction through the area, but poor substitute

The blood brain barrier (BBB)

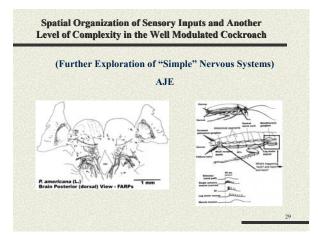
3 main compartments

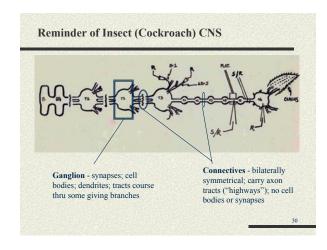

- Blood in capillariesCSF surrounds bulk of NS,
- contained in ventricles
- Intercellular clefts

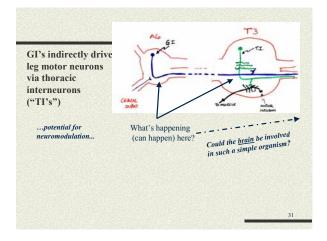
 Endothelial cells of capillaries specialized to be less permeable
 Most substances blocked; not lipophilic or gases (dissolved)
 Choroid plexus: specialized epithelial cells surround cp capillaries. These cells produce and secrete CSF.
 Intercellular clefts (20 nm): gateway to neurons

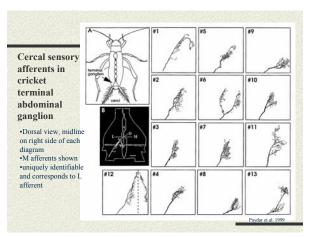
cont...The blood brain barrier (BBB)

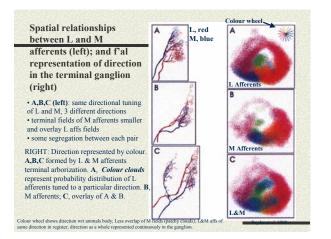
Fluid movement thru intercellular spaces, not thru glia (experiment: inject HRP into, product from peroxidase rx electron dense, look at distribution)

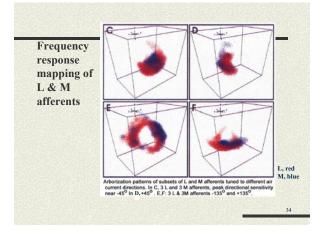

Parting shots at glial cells

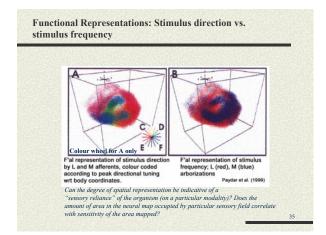

Glial cells act to separate individual or groups of neurons

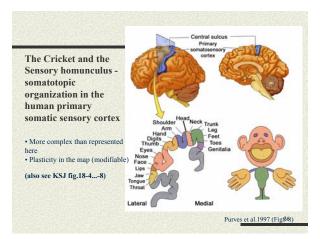

- Help regulate [K⁺] in extracellular environment
- Transmitters can act on glial membranes role ?


Glutamate transporter in glial cells


What if persistent high [Glu]₀? (mice that lack gene for astrocytic glu-transporter (GLT-1) develop epilepsy and increased susceptibility to convulsants)







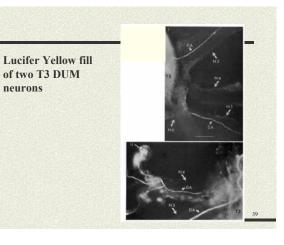
Continuing saga of the "well modulated" cockroach

Recall,

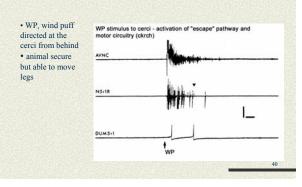
neurons

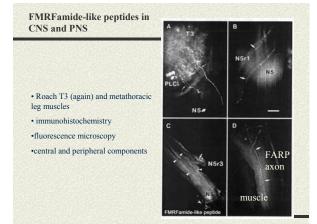
Octopamine (OA), dopamine (DA), and serotonin (5-HT) as putative neuromodulators

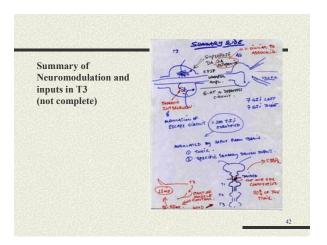
· effects on thoracic interneurons that drive motor neurons

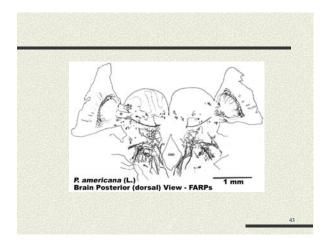

Role of FMRFamide-like peptides

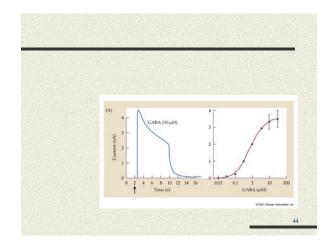
- peripheral innervation of skeletal muscles
- · central release sites
- release into haemolymph (blood)


Identifying specific neurons involved in modulation of activity in T3 and in skeletal muscle (Dorsal Unpaired Median (DUM) Neurons (peripheral and central


(?) connections)


Patterns of innervation by DUM neurons in T3 • DUM3,5,6; DUM3,4,5,6; DUM3,5; DUM5,6 • Where do they go and what do they do? · Central vs. peripheral roles Ckrch T3 DUM Neurons (cell bodies not shown




Recruitment of DUM Neuron during WP-evoked escape response

