tetrodotoxin has been shown to block a fraction of the resting sodium conductance, indicating a contribution by voltage-activated sodium channels.
In central nervous system neurons, chloride channels may account for as much as 10 percent of the resting membrane conductance ${ }^{13}$ and channels presumed to underlie this conductance have been described. ${ }^{14}$

ACTIVE TRANSPORT OF IONS

The Na-K Pump The viability of nerve cells is maintained by the constant transport of sodium and potassium across the cell membranes against their electrochemical gradients. This perpetual task is carried out by the Na-K pump, the required energy being obtained from hydrolysis of adenosine triphosphate (ATP). Indeed, it has been shown that the phosphatase itself is an integral part of the ion transport system. The properties of the enzyme have been summarized succinctly in a review by Skou. ${ }^{15}$ It
 of about 100 kD , and $\beta_{\text {r }}$ about 38 kD . The active enzyme appears to

 three sodium and two potassium ions are bound for each molecule of

 pue u!eqeno Кןге uтр!ч甲иечдодя

 әұеихәұје әлןоии! IIV pasodoad иәәq әлеч us!ueчpau qrodsuex ач
 'suoun [os лепи!

Extracted from Nicholls, Martin, and Wallace (1992)

> ${ }^{15}$ Gold, M. R. and Martin, A. R. 1983. J. Physio. ${ }^{1}$ Krouse, M. E., Schneider, G. T. and Gage, P. W. 1986. Nature 319: 58-60. ${ }^{15}$ Skou, J. C. 1988. Methods Enzymol. 156: 1-25.
${ }^{16}$ Kawakami et al. 1985. Nature 316: 733-736. ${ }^{17}$ Noguchi et al. 1986. FEBS Letters 196: 315-320.
lular solution; potassium is bound during extracellular exposure and released to the cytoplasm.

Transport of sodium and potassium was studied in squid axon by Hodgkin and Keynes and their colleagues ${ }^{20,21}$,19 and in snail neurons by Thomas. ${ }^{20,21}$ To examine the relations among internal sodium concentration, pump current, and membrane potential, Thomas used two intracellular pipettes to deposit ions in the cell, one filled with sodium acetate and the other with lithium acetate (Figure 7A). A third intracellular pipette was used as an electrode to record membrane potential. A fourth pipette was used as a current electrode for voltage clamp experiments (Chapter 4), and a fifth, made of sodium-sensitive glass, to monitor the intracellular sodium concentration. To inject sodium, the sodium-filled pipette was made positive with respect to the lithium pipette. Thus, current flow in the injection system was between the

 mV and gradually recovered over several minutes. Injection of lithium

 sodium injection was due to the action of a sodium pump and not to

 рәцs!
 (Figure 7C), as would be expected if it were due to pump activity.

 әлия! 7D).

 monitored. Sodium injection gave rise to an outward surge of current whose amplitude and duration followed the intracellular sodium con-

 the charge injected in the form of sodium ions. This evidence was
 of the cell, two potassium ions were carried inward.
 ${ }^{19}$ Baker, P. F. et al. 1969. J. Physiol. 200: 459-496. Thomas, R. C. 1969. J. Physiol. 201: 495-514
${ }^{21}$ Thomas, R. C. 1972. J.Physiol. 220: 55-71.

